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ABSTRACT
Monocular 3D object detection is a challenging problem
in self-driving and computer vision communities. Previous
works suffered from a severe seesaw phenomenon: multi-
category learning was worse than single-category, and feature
learning between categories inhibited each other. We re-
veal that the real culprit is the significant difference in depth
distribution between categories. Confusing feature represen-
tations exacerbate depth estimation. In this paper, we propose
Language Knowledge Transferring to introduce language
information in monocular 3D object detection, termed as
MonoLT. Multimodal language-Image guides networks learn
more class-specific features, which reduces the pressure of
depth estimation. Meanwhile, we propose the Polar Depth
Aggregator to make the depth estimation less disturbed by the
environment and other instances (especially different classes).
Comprehensive experiments performed on the KITTI dataset
prove the superiority of our proposed method. The code will
be released soon.

Index Terms— Monocular 3D Detection, Multimodal
language-Image learning, Monocular depth estimation

1. INTRODUCTION

Monocular 3D object detection is a challenging task. Its goal
is to estimate the 3D boxes in a single image [1], including
3D coordinates, 3D dimensions, and rotation angles. Due to
its low price and configuration simplicity, it can be applied
to self-driving and sweeping robots. Some methods [2, 3]
leverage monocular depth networks to generate pseudo point
clouds. Then superior point cloud-based 3D detection net-
works are utilized. However, the additional depth estimator
incurs significant overhead in inference. Another line of work
[4, 5] directly regress 3D parameterizations from standard 2D
detectors [6, 7]. The simple end-to-end architecture is capa-
ble of learning geometry-aware representation and achieving
competitive detection accuracy, which is worthy of research.

Some end-to-end monocular 3D object detection ap-
proaches have achieved impressive performance. However,
state-of-the-art (SOTA) approaches still suffer from a se-
vere seesaw phenomenon in autonomous driving datasets,
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Fig. 1. (a) The seesaw phenomenon in the autonomous driv-
ing dataset. The three columns in each method correspond
to easy, moderate, and hard. (b) The depth distribution of
Pedestrian, Car, and Cyclist. (c) Visualization of features ex-
tracted from a well-trained DID-M3D object detector. (d) The
text features of the above three categories, generated from the
CLIP text encoder.

as shown in Fig. 1(a). We use DID-M3D [5] as baseline
and find that training with only the Car category performs
significantly better than training with all three categories,
Pedestrian, Car, and Cyclist, indicating that feature learning
in different categories inhibits each other. To find out the
cause of this embarrassing problem, on the one hand, we take
KITTI [8] as an example to visualize the depth distribution
of the above three categories, i.e., the range of depth and the
depth unsmoothness. Depth unsmoothness is defined as the
absolute difference between adjacent regions when the in-
stance is quadratically divided, and the result is shown in Fig.
1(b). It can be seen that there are apparent differences be-
tween the three categories. Cars usually appear at a distance,
while pedestrians and cyclists are opposite (possibly because
the two categories are too small to be labeled at a distance).
On the other hand, we use a well-trained DID-M3D object
detector to extract the features from the ground truth before
depth estimation, as shown in Fig. 1(c). Principal componentIC
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analysis (PCA) [9] is utilized to reduce dimensions for visu-
alization. It can be seen that even on the scale of 10−6, the
features of the three categories are still mixed. When we train
a single-category detector, such as Car, the network already
implicitly contains a priori for that class, and the regression
network only needs to estimate depth in the range of the Car
to obtain higher accuracy. On the contrary, when the three
categories are trained at the same time, the confusing feature
representations make it difficult for the network to learn the
mapping with depth. Therefore, in monocular 3D object de-
tection, it is necessary to learn more class-specific features to
reduce the pressure of depth estimation.

Learning from multimodal data has become popular be-
cause vision tasks are assisted by language, audio, etc., and
have shown promising results. Contrastive Language-Image
Pre-Training (CLIP) [10] trains a huge image-text dataset
in a contrastive learning fashion. As a result, paired im-
age encoders and text encoders can learn interactive feature
representation. The barriers between the two modalities are
bridged, which helps both vision and language tasks. In
addition to impressive success in image classification [11],
the same achievements have been made in image segmen-
tation [12, 13] and object detection [14, 15]. Motivated by
the outstanding performance of language-Image learning on
visual representation learning, we use a well-trained CLIP
text encoder [10] to generate text features of {Pedestrian},
{Car}, and {Cyclist}. Specifically, we feed the category
names into prompt templates and use an ensemble of various
prompts. For example, ‘a photo of one {category}’ is con-
structed and used for feature extraction. Following [10], a list
of 63 prompt templates is used for each category. Then, PCA
is used to reduce dimensions, and the results are shown in
Fig. 1(d). Surprisingly, there is a relatively clear distinction
between the text features of the three categories. Inspired by
this, we propose Language Knowledge Transferring. After
obtaining the region of interest (RoI) features, we use the
fully connected layer to compute logits whose weights are
initialized by the integrated text features of three categories
generated by the CLIP text encoder. Through end-to-end
training, the discrimination of text features is transferred into
visual features. With multimodal language-Image learning,
the network can extract more class-specific features.

Although more class-specific features alleviate the pres-
sure on depth estimation, it is essential to ensure that back-
ground and other instances (especially different classes) are
excluded. Accordingly, we propose the Polar Depth Aggrega-
tor (PDA) to adaptively improve the attention between regions
within the instance and exclude other interferences. To adapt
to the individual shapes of the three categories, we add super-
vision to the offset of deformable convolution [16] to focus on
nine polar boundaries within the instance. Compared to learn-
ing offsets randomly, purposeful supervision can avoid inter-
ference from external regions. As a result, self-information is
fused while irrelevant information is excluded, which comple-

ments Language Knowledge Transferring and is critical for
information-sensitive tasks like depth estimation.

To sum up, our main contributions are threefold:
• We propose Language Knowledge Transferring to learn

more class-specific features. We are the first to introduce
language knowledge in monocular 3D object detection.

• We propose Polar Depth Aggregator (PDA) to fuse self-
information and exclude the interference of irrelevant re-
gions for depth estimation.

• Comprehensive experiments performed on the KITTI
dataset prove the superiority of our proposed method. Our
approach achieves state-of-the-art results by introducing
language knowledge in monocular 3D object detection.

2. METHODOLOGY

2.1. Overall Pipeline

The MonoLT we proposed is based on remarkable end-to-end
monocular 3D object detection methods such as DID-M3D
[5]. Fig. 2 is an overview of the proposed method, which
shows that our Language Knowledge Transferring is parallel
to other 3D branches, and the Polar Depth Aggregator is in-
serted before depth estimation.

2.2. Language Knowledge Transferring

After obtaining the RoI features fr, we add a branch in paral-
lel for introducing language knowledge. Specifically, a series
of convolutions are utilized to extract features further. Finally,
we use the fully connected layer to compute logits. Fig. 2
shows the architecture and training objective.

On the other hand, we generate the text embeddings by
feeding the category texts {Pedestrian}, {Car} and {Cyclist}
with prompt templates, e.g., “a photo of one {category}”, into
the pretrained CLIP text encoder [10]. Multiple prompt tem-
plates are ensembled into the final text features tPedestrian,
tCar, and tCyclist.

The weights of the last fully connected layer are initial-
ized by the text features. In this way, similarity can be calcu-
lated between region features and all text embeddings:

z(r) = [sim(fr, tPedes), sim(fr, tCar), sim(fr, tCyc)]. (1)

Then we apply softmax activation with a temperature τ to
compute the cross entropy loss:

Llanguage = LCE(softmax(
z(r)

τ
), yr), (2)

where yr denotes the class label.
Language Knowledge Transferring is used only in train-

ing to transfer the discrimination of text features to visual fea-
tures, which will not increase any cost during inference.
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Fig. 2. Architecture overview of MonoLT. Our proposed method contains two components: Language Knowledge Transferring
and Polar Depth Aggregator. The dark blue cubes represent the features, and the unfilled rectangles represent the corresponding
networks. In Polar Depth Aggregator, only one pixel inside the car is visualized, and the same at the remaining pixels.

2.3. Polar Depth Aggregator

There is no supervision for offsets in standard deformable
convolution [16] and plain convolution. Optimizing the
output features will introduce interference from irrelevant
regions, which exacerbates the depth estimation. To this end,
we propose a Polar Depth Aggregator (PDA) module inserted
before the depth estimation. The offset in deformable con-
volution is manually guided to nine polar boundaries of the
instance. The illustration of our PDA module is shown in Fig.
2. Local offset map is predicted from the RoI feature by the
convolution layer as follows:

△Pj = Conv(fr(pj)), (3)

where pj is the location of a pixel, fr(pj) is the RoI feature of
the j-th pixel, and △Pj =

{
△poj |o = 1, . . . , 9

}
is the local

offset map. This will be used in deformable convolution to
extract non-grid-like features. As suggested in [16], the sum
of pixels pj and offsets △Pj is used as the attention position.
All the features of the attention position are fused as a new
feature:

f
′

r(pj) =

9∑
o=1

wo · fr(pj +△poj). (4)

To facilitate the later depth estimation, we impose addi-
tional supervision for the offsets △Pj and compute an aux-
iliary loss to guide the offsets. Eight positions at the polar
boundaries are obtained at 45° intervals for each pixel in each
instance. Combined with its own position, the ground truth

coordinates Gj =
{
goj |o = 1, . . . , 9

}
corresponding to the

nine offsets is obtained. Then, we can calculate the ground
truth of offsets by △goj = goj − pj .

No special matching, for example, the Hungarian algo-
rithm, is required. The nine polar directions are just assigned
to nine offsets of deformable convolution. We use Smooth L1
loss to supervise the offset between △Pj and △Gj :

Loffset =
1

9Np

Np∑
j=1

9∑
o=1

SmoothL1(△poj ,△goj ), (5)

where Np denotes the number of pixels inside an instance.

3. EXPERIMENTS AND DISCUSSIONS

3.1. Experimental Setup

We use the KITTI [8] dataset to report the performance of our
method. The KITTI dataset contains 7481 training images
and 7518 test images. Following the suggestion of [1], we
divided the training images into a training set (3712) and a
val set (3769). The results of the val set are reported on the
training set (3712), while the results of the test set are reported
on all 7481 training images.

Following [5], the size of the input image is zero-padded
to 384×1280. Random horizontal flip is the only data aug-
mentation. We use PyTorch and a total batch size of 16 on 2
NVIDIA TITAN Xp GPUs (8 images per GPU). We train the
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Fig. 3. Some qualitative 3D detection results on the KITTI test set.

Table 1. Comparison with other state-of-the-art methods on
KITTI test set. The IoU thresholds for AP3D are 0.7 for Car.

method AP3D|R40 APBEV |R40

Easy Mod Hard Easy Mod Hard

SMOKE [17] 14.03 9.76 7.84 20.83 14.49 12.75
PGD [4] 19.05 11.76 9.39 26.89 16.51 13.49
CaDDN [18] 19.17 13.41 11.46 27.94 18.91 17.19
MonoFlex [19] 19.94 13.89 12.07 28.23 19.75 16.89
DCD [20] 23.81 15.90 13.21 32.55 21.50 18.25
MonoCon [21] 22.50 16.46 13.95 31.12 22.10 19.00
DID-M3D [5] 24.40 16.29 13.75 32.95 22.76 19.83
MonoLT 25.51 17.18 14.56 34.35 23.82 20.80
Improvements +1.11 +0.89 +0.81 +1.40 +1.06 +0.97

network with 150 epochs. AdamW optimizer is adopted, and
the initial learning rate is set to 0.001.

3.2. Comparison to State-of-the-Art

We compare our approach with other works that report state-
of-the-art performance on the KITTI [8] test set, as shown in
Table 1. Our method achieves superior performance on both
AP3D and APBEV . We outperform our baseline DID-M3D
[5] by 1.11 in AP3D Easy level and 0.89 in Mod. level, which
reveals that language knowledge is critical to learning class-
specific features.

3.3. Ablation Study

In Fig. 1(a), we perform multi-category learning in MonoLT
and compare it with baseline under single-category and multi-
category. Our approach significantly outperforms the base-
line under multi-category and slightly outperforms the base-
line under single-category, which indicates that multimodal
language-Image learning can guide the network to learn more
class-specific features and alleviates the seesaw phenomenon
caused by multi-category feature learning.

Table 2. Ablation study on KITTI val set.

LKT PDA AP3D|R40

Easy Moderate Hard

22.98 16.12 14.03
✓ 24.51 16.82 13.96

✓ 23.52 16.23 13.46
✓ ✓ 25.25 17.29 14.16

There are two components in our MonoLT, Language
Knowledge Transferring (LKT), and PDA. As shown in
Table 2, both LKT and PDA play significant roles in our

approach. LKT can achieve an improvement from 22.98%
AP to 24.51% AP in the Easy level and achieve 0.7 points
improvement in the Mod. level, which has been aligned with
the baseline under single-category. PDA can exclude the
interference during depth estimation and can achieve an im-
provement from 22.98% AP to 23.52% AP in the Easy level.

Table 3. Influence of language knowledge compared to hard-
coding on KITTI val set.

method AP3D|R40

Easy Moderate Hard

baseline 22.98 16.12 14.03
baseline + hard-coding 23.95 16.60 13.73
baseline + LKT 24.51 16.82 13.96

In order to prove the superiority of multi-modal language-
Image learning, we hard-coded the classification results ob-
tained by heatmap after RoI features, as shown in Table 3.
The hard-coding is a explicit way to introduce class-specific
features. Specifically, ROI Align extracts 7 × 7 × 64 fea-
tures, and then directly concatenate the categorical result of
heatmap 7× 7× 3 in the first stage, and outputs 7× 7× 67.
It can be seen that hard-coding can make features more class-
specific but worse than LKT. Our LKT implicitly guides the
network to learn language knowledge during training without
increasing inference time and memory cost.

3.4. Visualization

In Fig. 3, we provide the qualitative results of the proposed
method on the KITTI test set. The proposed method predicts
the location, size, and orientation well in the test set.

4. CONCLUSIONS

In this work, we point out that the seesaw phenomenon is
caused by the fact that confusing feature representations ex-
acerbate the depth estimation. To alleviate this problem, we
have proposed MonoLT, a novel monocular 3D object detec-
tion method supported by language knowledge. Multimodal
language-Image learning can guide the network to learn more
class-specific features and alleviates the pressure of depth
estimation. Moreover, we have proposed the Polar Depth
Aggregator to exclude the interference of irrelevant infor-
mation. Equipped with these components, MonoLT beats
existing state-of-the-art approaches on KITTI, which shows
the superiority of our method.
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