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ABSTRACT

The X-ray security inspection aims to identify any restricted
items to protect public safety. Due to the lack of focus on
unsupervised learning in this field, using pre-trained models
on natural images leads to suboptimal results in downstream
tasks. Previous works would lose the relative positional rela-
tionships during the pre-training process, which is detrimen-
tal for X-ray images that lack texture and rely on shape. In
this paper, we propose the jigsaw style MAE (J-MAE) to pre-
serve the relative position information by shuffling the posi-
tion encoding of visible patches. This forces the network to
perform semantic reasoning to understand the shape and com-
position of X-ray objects. Meanwhile, we propose the Incre-
mental Shuffling Module (ISM) and Permute Predicting Mod-
ule (PPM) to make the training process more stable and ac-
celerate convergence. Our proposed method has consistently
outperformed other methods on three downstream X-ray se-
curity inspection datasets.

Index Terms— X-ray security inspection, Unsupervised
learning, Masked image modeling, Jigsaw puzzles

1. INTRODUCTION

With the rising crowd density in public transportation hubs,
security inspection has become important for ensuring public
safety. Typically, X-ray scanners are employed to identify re-
stricted items. However, pinpointing prohibited items amidst
many X-ray images makes it challenging for security inspec-
tors to consistently and accurately detect all potential threats.
Recent works [1, 2, 3, 4] have achieved remarkable progress
in recognizing prohibited items from X-ray images. Utiliz-
ing the ImageNet pre-training weights through representation
learning [5, 6] as a starting point has become the consensus
among these exceptional works. However, the notable dispar-
ity in imaging principles between natural images and X-ray
images [7] hinders the convergence of the prohibited items
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(a)

(b)

Fig. 1. (a) Frequency histogram indexed by feature maxima.
(b) Example images and relative position distribution map of
encoder input and features obtained after MAE and J-MAE
pre-trained encoder.

detection network. Unsupervised learning for X-ray images
in security inspection remains an unexplored territory.

Masked Image Modeling (MIM) [8, 6, 9, 10, 11] has
gained significant attention in visual unsupervised represen-
tation learning due to its exceptional fine-tuning performance
in downstream tasks. It involves masking random portions
of an image and compelling the model to reconstruct these
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masked areas. The 768-dimensional features of the down-
stream dataset OPIXray [2], HiXray [3], and EDS [4] are
extracted based on the ViT-Base/16 [12] model pre-trained
with the MAE [6] objective using SiXray [1] training data.
The frequency histogram, sourced from 20173888 patches
and indexed by feature maxima, is shown in Fig. 1(a). We
perform statistical analysis on the encoder’s input and output
features. To reduce dimensionality, we utilize the features
of the two largest dimensions (indicated by green penta-
grams) to characterize the 768 dimensions. For each example
image in HiXray, we divide it into 196 patches. We then
extract the features of the encoder input and output for each
patch. We perform dimensionality reduction and obtain low-
dimensional features with corresponding position information
for each patch by utilizing the statistical information in Fig.
1(a). By taking the central patch (indicated by the red square)
as a reference, we calculate the feature difference between the
remaining patches and the reference patch. The normalized
relative position distribution map is shown in Fig. 1(b). Due
to positional encoding, the input features of the encoder ex-
hibit clear relative positional relationships. However, for the
features obtained after MAE pre-trained encoder, the relative
positional relationships are disturbed. This flaw in MAE sig-
nificantly negatively impacts X-ray recognition tasks because
X-ray images typically contain less texture information, and
the shape and composition are crucial for discrimination [1].

To preserve the relative position information of the image
and further infer the shape and composition of X-ray objects,
we consider optimizing MAE using jigsaw puzzles [13, 14],
which aims at recovering an original image from its shuffled
patches. Specifically, after masking a high proportion of the
image, we shuffle the preserved image patches. This is ac-
complished by adding a scrambled positional encoding to the
preserved image patches. The image reconstruction process
avoids duplicating close pixels and instead relies on semantic
reasoning to understand the shape and composition of X-ray
objects. To stabilize the training processes in the early stages,
we propose the Incremental Shuffling Module (ISM), which
gradually increases the degree of shuffling through a curricu-
lum learning schedule [15]. On the other hand, the permute
matrix is used to explicitly supervise the reconstruction pro-
cess in the Permute Predicting Module (PPM) to accelerate
convergence. Specifically, all the output image patches are
passed through the Convolutional Block Attention Module
(CBAM) [16] to further get the position vector, which serves
as the key for the attention module. Subsequently, the position
query initialized with Gaussian sampling is summed with the
pre-defined positional encoding to form the position query. In
attention module, each position query performs a query op-
eration on all the keys, resulting in an attention weight ma-
trix. This matrix is then subjected to operations such as scale,
Gumbel softmax, and Sinkhorn [17], ultimately transforming
into doubly stochastic matrices [17]. The permute matrix is
used as ground truth to alleviate the pressure on the recon-

struction process. As shown in Fig. 1(b), for the features
obtained after the jigsaw style MAE (J-MAE) pre-trained en-
coder, the relative positional relationships are partially pre-
served, which is beneficial for X-ray security inspection.

The main contributions of our approach are:

• We propose jigsaw style MAE (J-MAE) to preserve more
relative positional relationships in the representation
learning process. We are the first to investigate unsu-
pervised learning for X-ray images in security inspection.

• We propose the Incremental Shuffling Module (ISM) and
Permute Predicting Module (PPM) to stabilize the pre-
training process and converge rapidly.

• Comprehensive experiments performed on the down-
stream dataset demonstrate the effectiveness of our method.
Our approach achieves state-of-the-art results by intro-
ducing jigsaw in generative unsupervised learning.

2. METHODOLOGY

2.1. Overall Pipeline

An overview of our proposed J-MAE is presented in Fig. 2.
First, the image is randomly masked. The position encodings
of preserved patches are shuffled using the permute matrix
generated by the Incremental Shuffling Module. The visi-
ble patches are then fed into the Mask-Guided Image Mod-
eling for reconstruction. On the other hand, the reconstructed
patches are indexed by the position query to approximate the
permute matrix and explicitly predict the shuffling pattern.

2.2. Incremental Shuffling Module

After random masking, we get the masking matrix M, where
1 represents the masked patch, and 0 represents the preserved
patch. We plan to shuffle the positional encoding of a portion
of the preserved patches. We define that all 1s in M be-
long to 1, and all 0s in 0. To make the training process more
stable in the early stages, we introduce curriculum learning
[15], where the shuffling ratio τ(t) increases with the epochs,
starting from 0.5, then 0.75, and finally reaching 1.0. The
preserved patches are divided into 0F and 0E using τ(t):

0F ,0E = RandSelect(0, τ(t)), (1)

where 0F and 0E represent the fixed and the exchangeable
patches, respectively. We define the original patch index se-
quence as I = [0, 1, 2, ..., n−1], where n represents the num-
ber of patches. The shuffled patch index sequence is denoted
as Ĩ . We define the shuffling rules as follows:

Ĩi = Ii if Mi ∈ {1,0F }
Ĩj = Ii if i ̸= j and Mi,Mj ∈ 0E

Ĩj ̸= Ĩk if k ̸= j

. (2)
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Fig. 2. The proposed J-MAE framework consists of two main modules: Incremental Shuffling Module and Permute
Predicting Module. Permute matrix is exploited to shuffle the masked image in jigsaw style while serving as ground truth for
Permute Predicting Module. The gray features represent the position query initialized with Gaussian sampling.

Then, the shuffled patch index sequence Ĩ is constructed into
a permutation matrix R. We flatten the masked image to ob-
tain P , multiply P by the permutation matrix R to obtain the
shuffled image P̃ , and add sequential positional encoding to
it. Since the image patches have been shuffled, the positional
encoding is scrambled.

2.3. Permute Predicting Module

To alleviate the burden of reconstruction, in addition to the
MAE reconstruction loss, we employ the permute matrix R
to supervise the shuffling process explicitly. Specifically, on
one hand, the output patch features Fi(i = 0, 1, 2, . . . n− 1)
are fed into CBAM [16] to extract position vectors Vi:

Vi = σ(MLP(Pm(Fi)) +MLP(Pa(Fi)), (3)

where Pm and Pa represent 1-D max pooling and 1-D av-
erage pooling, respectively. The position vectors V are fur-
ther employed as the keys for the attention module. On the
other hand, we use position encoding as the position query.
However, to avoid the illogical situation of exploding atten-
tion weights caused by fixed position encoding, we follow the
approach used in variational autoencoders [18] to set the mean
and variance for each channel and initialize with a Gaussian
distribution. This results in the initialization of the position
query QI . After passing through the MLP, QI is added to
the fixed position encoding to obtain the final position query
Q. Subsequently, the position query Q is employed to query

attention weights from the position vectors V , ideally with the
ground truth being the permute matrix R. Considering that
the permute matrix R belongs to the class of doubly stochas-
tic matrices, where the sum of each row and column is 1, we
apply Gumbel softmax and Sinkhorn [17] operations to the at-
tention weights. This helps reduce the difficulty of predicting
the permute matrix by matrix transformation. The permute
prediction loss can be represented as follows:

LP = CrossEntropy(R,S(G(
Q · VT√

dq
))), (4)

where G, S represent Gumbel softmax and Sinkhorn, respec-
tively, and dq is the dimension of Q, which is 768 by default.

3. EXPERIMENTS AND DISCUSSIONS

3.1. Experimental Setup

We do unsupervised pre-training on large-scale SIXray [1],
consisting of 1,059,231 X-ray images. Then we do supervised
training on three prohibited items detection datasets OPIXray
[2], HiXray [3], and EDS [4].

In pre-training, we adopt ViT-Base/16 [12] as the back-
bone. AdamW optimizer with cosine learning rate scheduler
is employed, and the training is conducted for 800 epochs.
The hyperparameters for training include a batch size of 512,
an image resolution of 2242, and a base learning rate of 1e-4.
Our data augmentation strategy is consistent with MAE.
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Fig. 3. Example visualization results on HiXray testing split images from ViT-Base/16 model pre-trained with the J-MAE
objective using SiXray training data. For each image quadruplet, we show the original input image (1st column), the masked
image (2nd column), the jigsaw style masked image (3rd column), and the reconstructed image (4th column).

In downstream tasks, We finetune the advanced YOLOX
[19] with a ViT-based FPN backbone. We train the network
using AdamW optimizer with 100 epochs.

3.2. Comparison to State-of-the-Art

Table 1. Comparison to state-of-the-art generative unsuper-
vised learning methods on OPIXray, HiXray, EDS testing set.
MU, etc., are abbreviations of category names.

method OPI MU FO Hi MP PO1 EDS SE UM

BEiT [8] 68.4 74.6 70.2 75.4 95.1 85.3 48.5 44.8 83.5
MAE [6] 73.5 83.2 77.6 77.7 95.3 87.7 52.8 49.6 85.8
SimMIM [9] 73.2 83.3 76.5 78.2 95.8 88.8 52.6 52.3 85.6
MaskFeat [10] 74.4 84.2 77.9 77.5 96.4 89.3 52.1 51.9 86.6
CAE [20] 76.5 84.4 79.5 78.9 96.4 89.6 54.5 53.9 88.7
LoMaR [21] 75.3 84.9 79.8 79.5 95.9 90.4 53.9 53.3 89.4
MILAN [11] 77.8 83.9 80.6 78.6 97.0 89.8 54.6 54.6 88.7
J-MAE (Ours) 77.2 84.6 81.2 80.1 97.3 90.7 56.2 55.4 89.2
Improvements +3.7 +1.4 +3.6 +2.4 +2.0 +3.0 +3.4 +5.8 +3.4

We compare with other advanced generative unsupervised
learning methods on downstream OPIXray, HiXray, and EDS
testing sets, as shown in Table 1. Here, OPI, Hi, and EDS rep-
resent the average precision across all categories. Besides, we
also include precision for the top two categories with the most
instances. Our method achieves the best precision on three
downstream datasets and outperforms the baseline MAE. This
demonstrates the importance of preserving relative positional
relationships for X-ray security inspection.

3.3. Ablation Study

Compared to MAE, J-MAE has made three improvements,
namely: jigsaw style shuffling, ISM, and PPM. The results
in Table 2 demonstrate jigsaw, ISM, and PPM all play es-
sential roles. Jigsaw style shuffling can improve the average
precision from 77.7% to 78.5%. This indicates that empha-
sizing the shape and composition of X-ray objects during pre-
training is beneficial for X-ray security inspection. ISM and
PPM can stabilize the training process and alleviate the recon-
struction pressure, leading to a 1.0% and 0.6% improvement.

To demonstrate the advantage of J-MAE in preserving rel-
ative positional relationships, we introduced deep PE supervi-
sion in MAE, which explicitly adds position encoding before
each transformer layer in the encoder. Table 3 compares the
performance with deep PE supervision, showing that deep PE

supervision can improve the performance of MAE but is infe-
rior to J-MAE. This is because the position encoding partially
gets lost when transferred to downstream tasks.
Table 2. Ablation study on HiXray testing set. PO1, etc., are
abbreviations of category names, as mentioned in [3].
jigsaw ISM PPM AVG PO1 PO2 WA LA MP TA CO NL

77.7 87.7 87.5 85.4 95.1 95.3 89.7 61.0 19.8
✓ 78.5 89.3 92.4 87.6 91.5 95.3 91.1 59.4 21.2
✓ ✓ 79.5 90.2 88.7 89.4 97.7 94.8 91.9 60.4 22.9
✓ ✓ ✓ 80.1 90.7 91.2 90.3 97.9 97.3 90.2 61.2 21.6

Table 3. Influence of J-MAE compared to deep PE supervi-
sion on HiXray testing set. PO1, etc., are the same as Table 2.
method AVG PO1 PO2 WA LA MP TA CO NL

MAE [6] 77.7 87.7 87.5 85.4 95.1 95.3 89.7 61.0 19.8
J-MAE (Ours) 80.1 90.7 91.2 90.3 97.9 97.3 90.2 61.2 21.6
MAE
+ deep PE supervision 78.8 89.1 88.0 87.2 97.0 95.8 90.2 62.2 21.3

3.4. Visualization

In Fig. 3, the successful performance of the reconstruction
results indicates that the pre-training process attempts to infer
and understand the shape and composition of X-ray objects.

4. CONCLUSIONS

In this paper, we note that existing masked image modeling
methods would lose the relative positional relationships dur-
ing the pre-training process, which is detrimental for down-
stream X-ray security inspection tasks that rely on shape
information. To alleviate this issue, we propose J-MAE, an
advanced unsupervised learning approach that jointly ad-
dresses masked image modeling and jigsaw puzzles. The
process of reordering shuffled patches and reconstructing
the image forces the network to understand the shape and
composition of X-ray objects. In addition, we propose the
Incremental Shuffling Module (ISM) and Permute Predicting
Module (PPM) to stabilize the training process and alleviate
the complexity of reconstruction. Equipped with these com-
ponents, J-MAE achieves state-of-the-art performance on
three downstream X-ray security inspection datasets, offering
new insights to the security screening community.
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