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Abstract— 3D visual grounding is tasked with locating a
specific object within a 3D scene, as described by a given textual
reference. This task is challenging because it requires (1) the
accurate recognition of various objects in a 3D scene and (2)
the understanding of spatial relations in the description. How-
ever, current studies encounter difficulties in situations where
multiple similar objects are present or when the descriptions
involve intricate and abstract relations. In this paper, a novel,
simple, and efficient Object-Centric Referring network, namely
3D-OCR, is presented to take high-quality semantic represen-
tation and deep relation modeling into account. Specifically, an
offline Fine-grained Semantic Enhancement (FSE) module is
designed to reinforce the object-centric semantic awareness with
fine-grained high-quality object semantic representations. To
achieve superior object-centric relation awareness, we propose
a Deep Relation Modeling (DRM) module with the explicit and
implicit relation self-attention module, enriching object features
with relational context. Moreover, we utilize a vision-language
contrastive loss to further improve the matching process be-
tween point cloud and language. Comprehensive experiments
conducted on the challenging ScanRefer and Nr3D datasets
corroborate the exceptional performance of our method, with
an increase of +1.47% on ScanRefer and +1.2% on Nr3D.

I. INTRODUCTION

In recent years, the quest to comprehend the real world
through multiple lenses - including language, images, and
point clouds - has become a hot topic in research. Within this
context, 3D visual grounding stands out as a key foundational
task in this field. It involves pinpointing the specific object
within a given 3D scene and plays an important role in
various robotic applications, such as indoor navigation [1],
embodied agent [2] and human-robot interactions [3]. Com-
mon methods typically adopt a two-stage strategy [4]–[10],
following a detection-then-matching pipeline: they first uti-
lize pre-trained detectors to generate proposals, which are
then aligned with language cues to pinpoint the most accurate
match as the predicted target, as illustrated in Fig. 1 (a).

Two key observations can be gleaned when delving into
the above pipeline: First, 3D visual grounding demands that
the model be adept at differentiating between a myriad of
objects in a scene, especially when there are many objects
similar to the target, as is often the case in real-world
scenarios. This means the model must possess a keen object-
centric semantic awareness, capable of discerning unique
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Fig. 1. The comparison between traditional detection-then-matching
pipeline (a) and our method (b), where the green bounding box in the
output denotes the correct result and the red means incorrect.

attributes to differentiate between different classes of objects
and cluster those of the same class together within the
feature space. Second, a deeper understanding of the relation
among objects is typically the intrinsic objective for an
effective fusion and alignment module. Drawing on this, the
information interaction and matching between point cloud
and language is enabled, thereby highlighting the object-
centric relation awareness in the 3D visual grounding task.

Prevailing methods make substantial advancements from
following aspects: 1) explicitly decoupling textual attributes
to alleviate ambiguity in a sentence [11]; 2) modeling
shallow relational information among objects [7], [9]; 3)
injecting generated view-robust scene representations into
corresponding 3D scene features [10], [12]; 4) enhanc-
ing generic cross-modality representation with pre-training
methods [13], [14]. Despite the effectiveness, the outcomes
are still less-than-ideal. On one hand, the poor-quality of
object semantic representation remains a drawback in most
methods. This is because they either rely solely on point
clouds [11] as visual input or use rendered 2D images as
auxiliary [10]. Such limited visual representation often leads
to incorrect recognition of target objects. On the other hand,
most methods adopt shallow relationship modeling [7]–[9],
which does a decent job in simple descriptions. While they
tend to fall short when it comes to understanding more
intricate or abstract relations. Therefore, is it possible to
obtain high-quality of object semantic representations while
achieving the deep relation understanding?
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3D-OCR, a novel object-centric referring network, gives
a ”yes” answer. As shown in Fig. 1 (b), (1) we construct an
offline Fine-grained Semantic Enhancement (FSE) module to
reinforce object-centric semantic awareness. This inspiration
arises from the fine-grained object segmentation capability of
the celebrated 2D segmenter SAM [15], as well as the high-
quality object semantic representation afforded by CLIP [16].
In detail, we begin by extracting valid class-agnostic 2D
instance masks based on SAM [15] with a well-designed fil-
tering strategy. Then our model aggregates per-mask features
by fusing multi-view CLIP [16] image embeddings to form
fine-grained 2D visual representations. Finally, we obtain the
semantic-enhanced object features by concatenating the 3D
features with its corresponding 2D counterpart. (2) A Deep
Relation Modeling (DRM) module is introduced to achieve
superior object-centric relation awareness. Initially, we utilize
an explicit and implicit relation self-attention module that
incorporates positional information of objects to enrich their
features with relational context. Following this, we adopt a
Co-Attention [17] mechanism to amalgamate these relation-
enhanced object features with textual features. This fusion
process promotes effective communication and alignment
between the point cloud and language modalities.

The contributions of this paper can be summarized as:

• We propose a simple and efficient framework called
3D-OCR to improve 3D visual grounding from a new
object-centric view, taking high-quality semantic repre-
sentation and deep relation modeling into account.

• We design an offline fine-grained semantic enhancement
module for strengthening object-centric semantic aware-
ness and a deep relation modeling module to achieve
superior object-centric relation awareness. Moreover, a
vision-language contrastive loss is proposed to improve
matching process between point cloud and language.

• Through extensive experiments, our method exhibits
outstanding performance on challenging datasets such
as ScanRefer [4] and Nr3D [5], thereby validating the
effectiveness of our proposed approach.

II. RELATED WORKS

A. 2D Semantic Assist for 3D Visual Grounding

Many 3D visual grounding methods endeavor to use rich
and clean 2D features to enrich semantic representations due
to the inherent limitations of 3D point clouds, which are often
sparse, noisy, and incomplete. There are two representative
approaches: 1) utilizing 2D image semantics to enhance
3D point cloud representation [6], [18], and 2) integrating
features of multi-view images rendered by the object pro-
posal [19], [20]. However, the above approaches suffer from
drawbacks such as slow extraction of image features in real-
time and poor-quality semantic representation contained in
rendered images. Instead, our approach proposes a novel
offline fine-grained semantic enhancement module that not
only effectively alleviates these issues, but also facilitates the
enhancement of object-centric semantic awareness.

B. Relation Modeling with Transformer

Transformer [21] is widely applied in natural language
processing, vision, vision-language and several other do-
mains.The attention mechanism, a core component of the
transformer architecture, is order-independent, and the po-
sitional information can be injected into each token. In-
spired by this, some 3D visual grounding methods [7], [9]
model relational information based on specially designed
modules. 3DVG-Transformer [9] puts forward a coordinate-
guided attention to refine the neighboring relations among
clusters. TransRefer3D [7] defines the nonlinear relation
representations based on entity features. However, they only
adopt shallow relationship modeling and fail to represent
more complex and abstract relations. In contrast, our method
introduces a deep relation modeling module that effectively
and fully models relations, improving object-centric relation
awareness.

III. PROPOSED METHOD

A. Overview

The 3D-OCR is based on the powerful Multi3DRefer [19].
As shown in Fig. 2, given the point cloud P ∈ RN×(3+D)

(comprising N points characterized by xyz coordinates and
extra D-dimensional attributes) and the textual description
T = {wi}Li=1(a sentence with L words), we first adopt
PointGroup [22] as our 3D encoder and CLIP [16] as the
text encoder. Then we employ the fine-grained semantic en-
hancement module to enrich semantic representations of each
object. Subsequently, we utilize the deep relation modeling
module to model complicated relations among objects. At
last, the grounding head uses a duo of fully connected layers
to output the target object with the maximum probability.

B. Point Cloud and Language Encoder

Point Cloud Encoder. We first encode the point cloud P
as object proposals features F 3d

obj ∈ RM×32 and coordinates
C3d

obj ∈ RM×6 by pre-trained PointGroup, where M denotes
the number of proposals. These encoded object proposals
will be used to regress the target object by a grounding head.
Then, we fuse F 3d

obj with F 2d
obj extracted by FSE module to

generate the semantic-enhanced object features F se
obj.

Language Encoder. Following [19], we encode the lan-
guage input T with CLIP to obtain word-level and sentence-
level feature vectors: W ∈ RL×256, S ∈ R1×256, where W
is then used to predict the target object class and S will be
calculated for the contrastive loss.

C. Fine-grained Semantic Enhancement (FSE)

To enrich visual representations of each object in 3D
scenes, we devise a fine-grained semantic enhancement mod-
ule based on the powerful SAM [15] and CLIP [16].

1) Valid Masks Extraction Based on SAM: Given K
multi-view images within a scene, we first extract Ni, i ∈
[1,K] masks of the i-th image based on SAM and obtain ini-
tial masks Q. These masks may contain many invalid results
taking the ambiguity and fuzzy boundaries into account, such
as excessive overlap masks and those encompassing multiple
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Fig. 2. The overview of our 3D-OCR framework, which takes a 3D point cloud and a text description as inputs and outputs the bounding box of the
object that is most relevant to the input text. The Fine-grained Semantic Enhancement (FSE) module utilizes multi-view images corresponding to a 3D
scene to enhance object-centric semantic awareness. Furthermore, the Deep Relation Modeling (DRM) module fuses relation-enhanced object features with
text features to achieve superior object-centric relation awareness.

objects. Thus we introduce a valid-mask filtering strategy to
filter out invalid masks, as shown in Algorithm 1: 1) We first
set two ratio thresholds tmin and tmax to limit the area of each
mask within a reasonable range. 2) Then, we calculate the
similarities and IoU matrix among remaining masks and set
a threshold T to retain masks that are highly representative.
Thus we obtain the final valid masks Qfinal = [q1, ... , qK ],
where qi, i ∈ [1,K] represents masks in the i-th image.

2) Fine-grained 2D-3D Feature Aggregation: The valid
masks are then maped back to the original image to gain the
corresponding image blocks. Then, we follow [19] and use
the CLIP image encoder to extract the block features which
will be filled into the corresponding area of the original
image. Thus, we acquire the fine-grained 2D features for the
i-th multi-view image as F img

i =
∑Ni

j=1 f
img
i,j ∈ R256, where

f img
i,j denotes features of the j-th image block in the i-th

image. We devise a transformation matrix Wt that projects
2D features to 3D space, utilizing the camera intrinsic param-
eters. Therefore, we obtain fine-grained 2D representations
of the input 3D scene as F 2d =

∑K
i=1 WtF

img
i ∈ R256.

The above steps are executed offline for efficiency as we
save the fine-grained 2D features to local storage and retrieve
them directly while training. We apply PointGroup [22] to
generate object proposals with 3D features F 3d

obj and coor-
dinates P 3d

obj. Then, these coordinates enable direct retrieval
of the corresponding 2D features F 2d

obj from the 3D space. In
the end, the 2D and 3D features are concatenated into a 288-
dimensional set, which is then compacted to 256 dimensions
via a 1D convolution to yield the semantic-enhanced object
features: F se

obj = Conv1d([F
3d
obj;F

2d
obj]) ∈ RM×256.

D. Deep Relation Modeling (DRM)

Understanding spatial relations among objects is essential
to accurately identify the target within the scene. Distinguish-
ing itself from other methods, 3D-OCR uses a deep relation
modeling module to provide the effective and comprehensive
object-centric relation awareness.

It is necessary to provide a concise review of the original
attention mechanism in [21] since our DRM module is
built upon it. Given an input sequence X ∈ Rn×dx of n
elements and the single-head attention first computes the
query, key and value embeddings by Q = WQX, K =
WKX, V = WV X , where WQ,WK ,WV ∈ Rdx×dz

are matrix parameters. Then we calculate attention matrix
using the query and key embeddings and aggregate the value
embeddings to output the results as follows:

A =
QKT

√
dz

, Z = Softmax(A)V (1)

where A ∈ Rn×n is the attention matrix, whose elements
ai,j is the attention weight between the i-th and j-th object
proposal. To capture more diverse relations, multi-head self-
attention is employed where each head computes an inde-
pendent and the outputs from all heads are concatenated.

1) Explicit and Implicit Relation Self-Attention: To model
intricate relations among objects, the Explicit and Implicit
Relation Self-Attention (EIR-SA) module is proposed, as
shown in Fig. 3. Given the object positions, we explicitly
calculate the relative distances under x, y, z coordinates, and
the Euclidean distance in 3D space, denoted as Dx, Dy,
Dz, and De, respectively. They constitute the first part of
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Algorithm 1 Valid-mask Filtering Strategy in FSE.
Input: K multi-view images
Parameter: Threshold ratios tmin, tmax, IoU threshold T
Output: Final valid masks Qfinal

1: for i = 1 to K do
2: {m1,m2, ...,mni}← obtain initial masks based on

SAM for the i-th image
3: {r1, r2, ..., rni

}← calculate the area ratio of each
mask to the entire image, and remain masks with area
ratio between tmin and tmax

4: compute the similarities S and IoU matrix Imat among
remaining masks with the entire image

5: filter out the masks where Imat ⩾ T with lower S, and
select final valid masks Qfinal

6: end for
7: return Qfinal

relation-attention weights in our EIR-SA module:

Wex = Concat (De,Dx,Dy,Dz) ∈ RM×M×4 (2)

Although these four relative distances encapsulate the
majority of object relations in linguistic descriptions (e.g.,
De for “near” and “far”, Dx for “right” and “left”, Dy for
“behind” and “front”, Dz for “low” and “top”), they fall
short when it comes to grasping the more complex spatial
relations, such as it is a black chair at the corner of the table,
or there is a cabinet against the side of the room. Inspired
by [8], we introduce an implicit relation modeling method
by encoding the direction angles among objects:

pij = [sin (θh) , cos (θh) , sin (θv) , cos (θv)] (3)

where θh,θv are the horizontal and vertical angles of the
line connecting centers of the i-th object and j-th object in
3D space. The implicit pairwise relation embeddings Pim =
{pij} ∈ RM×M×4 are used to generate the second part of
relation-attention weights in our EIR-SA module:

Wim =
Linear(X) Linear(Pim)

T

√
dz

∈ RM×M×4 (4)

In the end, we concatenate the above explicit and im-
plicit relation-attention weights and construct the relation-
enhanced object features F re

obj with object-pairs attention
weights as the follows:

F re
obj = Softmax (A+AEIR)V (5)

AEIR = Concat [Wex, log σ(Wim)] (6)

2) Cross-Modal Interaction and Matching: In order to
facilitate the information interaction and matching between
point cloud and language, we leverage a Co-Attention mod-
ule [17] to fuse relation-enhanced object features and text
features. Specifically, we use F re

obj as queries and W as
keys and values to conduct cross-modal interaction: F co

obj =

CoAttn(F re
obj,W ,W ) ∈ RM×do , where do denotes the

dimension of output proposals and the FNN is used to trans-
form the cross-modal features F co

obj for the final matching.

Object Positions
V

QK

Object-Pairs 
Attention 

Matrix

Relation 
Attention 

Matrix

Semantic-Enhanced Feature

Relation-Enhanced Feature

WexWim
Scaled Dot-

Product

FC FC FC FC

FC

Scaled Dot-
Product

C

C ConcatAdd Mul

Softmax

Fig. 3. The Explicit and Implicit Relation Self-Attention (EIR-SA) module,
where the self-attention matrix is combined by object-pairs and relation
attention matrix.

E. Training and Loss Function

We employ multiple losses L = Ldet+Lref+Lcon following
the previous works [8], [19] to train our 3D-OCR model end-
to-end, including the 3D detection loss Ldet, the reference
loss Lref and the contrastive loss Lcon. The detection loss
Ldet is introduced in PointGroup [22] for supervising per-
point semantic class, offset vectors towards object center and
objectness confidence score. We use the multi-class cross-
entropy loss as Lref for supervising the DRM module and
grounding head to locate target object with the maximum
probability. Finally, to facilitate the learning of better match-
ing process between point cloud and language vis cross-
modal alignment, we design a symmetric contrastive loss
Lcon which is composed of two cross-entropy loss:

LO→S
con = − log

exp(cos(F̄ re
i ,Si)/τ)∑B

j=1 exp(cos(F̄
re
i ,Sj)/τ)

(7)

LS→O
con = − log

exp(cos(Si, F̄
re
i /τ)∑B

j=1 exp(cos(Si, F̄
re
j )/τ)

(8)

Lcon = (LO→S
con + LS→O

con )/2 (9)

where
(
F̄ re
i ,Si

)
is the mean relation-enhanced features of

all objects paired with a sentence for the i-th batch, B is the
batch size and τ is the temperature parameter.

IV. EXPERIMENTS

A. Datasets

ScanRefer [4] dataset is built on 800 3D scenes from
ScanNet dataset [24]. We follow the official split and use
36,665 human-written language annotations describing 7,875
objects from 562 3D scenes for training, and evaluates on
9,508 sentences for 2,068 objects from 141 3D scenes.
According to whether the target object is a unique object
class in the scene, the dataset can be divided into a ”unique”
and a ”multiple” subset in evaluation. The metric of the
ScanRefer is the Acc@mIoU with m ∈ {0.25, 0.5}, which
means the fraction of descriptions whose predicted box
overlaps the Ground Truth (GT) with IoU > m.
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TABLE I
COMPARISON RESULTS ON THE SCANREFER [4] AND NR3D [5] DATASETS. WE HIGHLIGHT THE BEST PERFORMANCE IN BOLD.

Method Publication Data
ScanRefer Nr3D

Unique Multiple Overall Easy Hard View
Dep

View
Indep Overall@0.25 @0.5 @0.25 @0.5 @0.25 @0.5

ScanRefer [4] ECCV2020 3D Only 67.64 46.19 32.06 21.26 38.97 26.10 - - - - -
ReferIt3D [5] ECCV2020 3D Only 53.80 37.50 21.00 12.80 26.40 16.90 43.6 27.9 32.5 37.1 35.6
TransRefer3D [7] MM2021 3D Only - - - - - - 56.7 39.6 42.5 50.7 48.0
SAT [6] ICCV2021 3D+2D 73.21 50.83 37.64 25.16 44.54 30.14 56.3 42.4 46.9 50.4 49.2
3DVG-Transformer [9] ICCV2021 3D Only 77.16 58.47 38.38 28.70 45.90 34.47 48.5 34.8 34.8 43.7 40.8
MVT [10] CVPR2022 3D+2D 77.67 66.45 31.92 25.26 40.80 33.26 61.3 49.1 54.3 55.4 55.1
3D-SPS [23] CVPR2022 3D+2D 84.12 66.72 40.32 29.82 48.82 36.98 58.1 45.1 48.0 53.2 51.5
ViL3DRel [8] NeurIPS2022 3D Only 81.58 68.62 40.30 30.71 47.94 37.73 70.2 57.4 62.0 64.5 64.4
EDA [11] CVPR2023 3D Only 85.76 68.57 49.13 37.64 54.59 42.26 - - - - 52.1
Multi3DRefer [19] ICCV2023 3D+2D 85.30 77.20 43.80 36.80 51.90 44.70 55.6 43.4 42.3 52.9 49.4
Ours - 3D+2D 86.67 77.56 45.35 37.65 53.37 45.39 72.3 57.9 61.8 65.9 65.6

TABLE II
ABLATION STUDY ABOUT TRAINING 3D-OCR WITH DIFFERENT TYPES

OF PROPOSAL FEATURES. “3D” FOR POINT CLOUD FEATURES,
“RENDERED” FOR RENDERED IMAGE FEATURES IN MULTI3DREFER

[19], AND “FINE-GRAINED” FOR FINE-GRAINED IMAGE FEATURES IN

OUR FSE MODULE.

Features Unique
@0.5

Multiple
@0.5

Overall
@0.5

3D 75.11 35.36 43.78
Rendered 73.09 32.03 42.10
Fine-grained 74.46 33.98 42.65
3D + Rendered 76.37 36.29 44.76
3D + Fine-grained 77.56 37.65 45.39

Nr3D [5] dataset is also proposed on ScanNet [24] with
41,503 free-form sentences similar to ScanRefer’s text an-
notation. The sentences are split into “easy” and “hard”
subsets in evaluation, where the target object in “easy” subset
only contains one same-class distractor in the scene while it
contains multiple ones in the “hard” subset. According to
whether the sentence requires a specific viewpoint to ground
the referred object, the dataset can also be partitioned into
“view depedent” and “view independent” subsets. GT boxes
for all candidate objects in the scene are provided in Nr3D
dataset. The metric is the accuracy of selecting the target
bounding box among proposals.

B. Implementation Details

Following [19], we adopt a re-implementation of Point-
Group [22] with the Minkowski Engine as point cloud
encoder. We freeze SAM with VIT-L as mask extractor and
CLIP with VIT-B/32 as image encoder in FSE module. Our
text encoder is also initialized from CLIP. We set tmin =
0.05, tmax = 0.75 and T = 1.0 during the valid-mask-
filtering phase. We set the dimension d = 256 and use 8
heads for 3 transformer layers. Our 3D-OCR is optimized
by the AdamW algorithm with the momentum of 0.9, the
weight decay of 1e-4 and the initial learning rate of 5e-4. We
train 3D-OCR on ScanRefer and Nr3D both for 60 epochs
with a batch size of 4. For data augmentation, we randomly
apply coordinate jitter, x-axis flipping and rotation around the

TABLE III
ABLATION STUDY OF THE EXPLICIT AND IMPLICIT RELATION

SELF-ATTENTION (EIR-SA) MODULE. “ERM” FOR EXPLICIT RELATION

MODELING, “IRM” FOR IMPLICIT RELATION MODELING.

ERM IRM Unique
@0.5

Multiple
@0.5

Overall
@0.5

74.51 34.67 43.43
✓ 75.31 35.36 44.38

✓ 75.16 36.24 44.21
✓ ✓ 77.56 37.65 45.39

TABLE IV
ABLATION STUDY OF OUR METHOD 3D-OCR WITH AND WITHOUT

CONTRASTIVE LOSS.

Contrastive Loss Unique
@0.5

Multiple
@0.5

Overall
@0.5

77.34 35.59 44.71
✓ 77.56 37.65 45.39

z-axis. All experiments are conducted on a single NVIDIA
RTX 4090 GPU using Pytorch.

C. Comparison Results

We compare our 3D-OCR against recent state-of-the-art
(SOTA) methods on two 3D visual grounding datasets.

ScanRefer. The left half of Table I shows the comparison
results on ScanRefer. 3D-OCR outperforms most SOTA
method comprehensively, especially by +1.47 at Acc@0.25
and +0.69 at Acc@0.5 compared to the powerful method
Multi3DRefer [19]. Delving into the details, for the “Unique”
subset—a challenging subset that requires robust object-
centric semantic discernment for the precise identification of
unique target object—the accuracy rates achieved by most
pre-existing solutions fail to surpass the 85% at Acc@0.25
and 70% at Acc@0.5. In contrast, we realize the remarkable
86.67% and 77.56% thanks to the semantic-enhanced object
features generated by FSE module.

Nr3D. The comparison results on Nr3D are reported at the
right half of Table I. While descriptions in Nr3D are detailed
and complex, our 3D-OCR still surpasses SOTA methods
across most metrics and reaches the best performance of
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Fig. 4. t-SNE [25] visualization and distance variances of proposal features. Base is the variant of 3D-OCR without FSE and DRM modules. (a) and (b)
represent the t-SNE visualization of Base and 3D-OCR, while (c) denotes the t-SNE distance variances for inter-class and intra-class objects in ScanRefer.

65.6% in the “Overall” setting. Additionally, the “Hard”
subset within the Nr3D, characterized by the presence of
multiple distracting objects from identical categories, serves
as a rigorous test for any object recognition system. Re-
markably, our 3D-OCR method demonstrates a significant
enhancement of 0.5% in accuracy compared to the SOTA
method Vil3DRel in the “Hard” subset, thereby underscoring
the proficiency of our method in effectively differentiating
between objects of the same class situated within 3D scenes.

D. Ablation Study
We conduct ablation studies on the ScanRefer validation

set to investigate the contribution of each component.
1) In Table II, we present the ablation results for different

types of proposal features, which clearly showcase the su-
periority of our fine-grained 2D features over the rendered
image features utilized in the baseline Multi3DRefer [19].
Moreover, the integration of fine-grained 2D features with
3D features results in the highest performance enhancement,
demonstrating better object-centric semantic awareness ob-
tained by our method. Additionally, we observe that both
types of 2D features are less effective than 3D features alone,
underscoring the value of 3D information.

2) To showcase the capabilities of our 3D-OCR in relation
modeling, we perform ablation analysis on EIR-SA module,
with results presented in Table III. Rows 2 and 3 illustrate
that both explicit and implicit relation modeling significantly
enhance spatial reasoning. Row 4 confirms that using a multi-
perspective approach to model relative positions results in a
more complete understanding of object relations, implying
the advanced object-centric relation awareness.

3) Table IV reports the performance of our 3D-OCR with
and without contrastive learning on ScanRefer validation set.
We note a consistent enhancement across all subsets due
to the incorporation of contrastive loss, with a particularly

notable improvement of +2.06% in the ’hard’ subsets. This
finding substantiates that the contrastive loss contributes to
better fusion of visual and language features, thereby leading
to a more precise differentiation of similar objects.

4) In order to assess the capacity of our 3D-OCR to
differentiate various objects within 3D scenes, we present a
t-Distributed Stochastic Neighbor Embedding (t-SNE) [25]
visualization of proposal features, as depicted in Fig. 4. We
assign 20 labels in ScanRefer [4] to the proposals with the
nearest GT object [19], [26]. We compare the performance
of 3D-OCR with its variant that does not include FSE and
DRM modules, namely Base. We set each point represents
the features of one object proposal and different colors are
used to distinguish different classes of proposals in Fig. 4
(a) and (b). The delineation is markedly noticeable, with
our 3D-OCR demonstrating a significant consolidation of
features for intra-class objects and a clear dispersion for those
from inter-class. Furthermore, We obtain the same assertion
more intuitively by calculating the feature distance variances
among these objects, which is presented in Fig. 4 (c). The
inter-class mean distance variances from 3D-OCR surpass
those from Base, while the intra-class variances demonstrate
the converse trend. Consequently, we conduct that our 3D-
OCR is better at distinguishing objects in the scene, which
facilitates the optimization of downstream tasks.

E. Qualitative Results

We perform a qualitative comparison of 3D-OCR with
the baseline model Multi3DRefer [19] on ScanRefer [4]
dataset and present representative examples in Fig. 5. These
examples indicate that 3D-OCR has a better understanding
of the intricate relations between scene and language.
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Ground 
Truth

Multi3DRefer

3D-OCR
(Ours)

Description
The object is a pillow. it
is the top pillow to the
right side at the lamp in
between the beds.

The small red ottoman is
on the ground to the left
of the round table, in
front of the couch.

A loft bed sits to the left
of a window, it's got a
desk on it's left side.

The white toilet is in
the stall to right, where
the door is open and
the lid is up.

The monitor is on the
desk, it is the second
one in from the left.

There is a rectangular
dark recycling bin with
wheels. It is next to a
door.

Fig. 5. The qualitative results with ScanRefer [4]. The blue/red/green
colors indicate the ground truth/incorrect/correct bounding boxes.

V. CONCLUSION

In this paper, we introduce 3D-OCR, a simple and ef-
ficient framework designed to boost 3D visual grounding
from a novel object-centric view. In detail, we propose an
offline Fine-grained Semantic Enhancement (FSE) module
to reinforce object-centric semantic awareness with fine-
grained high-quality object semantic representation. A Deep
Relation Modeling (DRM) module is proposed by explicitly
and implicitly embedding positional information and mod-
eling contextual relations among objects, achieving superior
object-centric relation awareness. Extensive experiments un-
derscores the outstanding performance and effectiveness of
our method. In the future, we will delve deeper into the
interaction between object and scene to further advance 3D
visual grounding and related 3D vision-language tasks.
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