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ABSTRACT

Model quantization finds success in simplifying model in-
ference in practical applications. However, it predominantly
focuses on CNNs and 2D ViT models, with limited attention
given to quantizing 3D models. We pensively explore 3D
model quantization challenges and discover similar numerical
distributions of Softmax and LayerNorm between 3D and 2D
models. Consequently, we apply the quantization algorithms
FQ-ViT and I-ViT designed for 2D ViT models to 3D model
quantization to address performance issues caused by uneven
numerical distributions in Softmax and LayerNorm. Our re-
search includes extensive experiments using transformer ar-
chitectures and establishes benchmarks, demonstrating suc-
cessful quantization of 3D multimodal model UNITR. No-
tably, our approach experiences a slight decrease compared
to FP32 while outperforming other state-of-the-art models.
For example, in the 3D object detection task on the nuScenes
dataset, the 8-bit UNITR (FQ-ViT) achieves impressive NDS
and mAP scores of 73.0% and 70.0%, surpassing the full pre-
cision BEVFusion model.

Index Terms— ViT, Model Quantization, 3D Object De-
tection, BEV map segmentation

1. INTRODUCTION

Quantization enhances computational efficiency by reduc-
ing the bit widths of model weights and activations, proving
beneficial for hardware implementation[1]. However, current
quantization approaches, developed mainly for CNNs and 2D
vision transformers, need to accommodate the intricacies of
3D vision, where data representation and processing differ
markedly, especially in handling sparse point clouds[2]. The
significant gap is primarily attributed to the distinct numerical
distributions between 2D and 3D data, especially in applica-
tions that involve the fusion of images and point clouds in 3D
vision[3]. Consequently, there is a pressing need for quantiza-
tion methods specifically designed for 3D vision transformers
to address the unique challenges of three-dimensional data
environments.

Recent research has highlighted the detrimental impact of
quantizing LayerNorm and Softmax in 2D vision transform-

*means equal contribution, and T means corresponding author
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Fig. 1: illustrates the workflow of the entire paper. Initially, a
comparison is made between the data constructions in 2D and
3D, followed by an investigation into their data distributions.
Finally, the quantization strategy employs in 2D is applied to
the 3D vision.

ers on model accuracy. This is primarily due to significant
variability in LayerNorm input channels, some deviating up
to 50 times the median. Additionally, attention map values in
transformers show a skewed distribution, mainly concentrated
between 0 and 0.01, with outliers[4]. These issues reduce the
effectiveness of standard quantization methods, leading to a
notable decline in model performance. Therefore, develop-
ing and exploring quantization techniques that address these
challenges is crucial to maintaining model integrity.

As shown in Figure 1, a notable discovery in applying uni-
form quantization to the 3D multimodal algorithm UNITR[5]
is the similarity in numerical distributions between the Lay-
erNorm and Softmax layers of 3D and 2D visual data de-
spite their differing data compositions. This similarity jus-
tifies exploring the transfer of 2D vision quantization tech-
niques, known for managing channel variances in LayerNorm
and skewed distributions in Softmax, to 3D vision. Conse-
quently, we introduce two specialized methods, FQ-ViT and
[-ViT[6], designed for the quantization of these layers in 3D
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contexts. These approaches effectively address the unique
quantization challenges in 3D vision, enhancing the UNITR
model’s performance after quantization.

Integrating FQ-ViT and I-ViT into UNITR model sig-
nificantly enhance performance at 8-bit precision, achieving
73.0% in NDS and 70.0% in mAP. This result significantly
exceeds that of full-precision BEVFusion, surpassing it by
over 1.6% in NDS and 1.5% in mAP. Comparative and abla-
tion studies confirm the superiority and reliability of FQ-ViT
and I-ViT in 3D quantization, highlighting their crucial role
in improving model efficiency in resource-limited settings.

The main contributions are summarized as follows:

1.We primarily analyze the numerical distribution of Lay-
erNorm and Softmax in 3D vision. The findings indicate that
the performance reduction in quantized models across 2D and
3D dimensions is primarily due to marked inter-channel vari-
ations in LayerNorm and substantial non-uniformity in soft-
max attention maps.

2.The Power-of-Two Factor (PTF) and Log Int Softmax
(LIS) from the 2D quantization strategy FQ-ViT and Shiftmax
and [-LayerNorm from I-ViT are introduced into 3D vision.
FQ-ViT and I-ViT address the issue of uneven numerical dis-
tribution in Softmax and LayerNorm, enabling more accurate
quantization.

3.We conduct extensive model quantization experiments
on the UNITR using FQ-ViT and I-ViT, comparing them
with other 3D vision models. The results show that FQ-ViT
and I-ViT achieve competitive performance in quantizing the
UNITR to 8 bits compared to other 3D vision models.

2. RELATED WORK

2.1. Multi-Sensor 3D Perception

In autonomous driving, the combined use of lidar and cam-
eras is critically explored for improved reliability, supported
by extensive research[7, 8]. 3D perception methods us-
ing these sensors are mainly divided into point-based[9],
proposal-based[10], and Bird’s Eye View (BEV)-based[11]
approaches. Point and proposal-based techniques enhance
lidar data with image features, whereas BEV-based methods
integrate camera and lidar data in the BEV space, applying
2D convolution to achieve adequate 3D perception.

2.2. Network Quantization

Model quantization, converting floating-point to lower-bit
parameters, is critical for efficiency on constrained hardware
and is divided into Post-Training Quantization (PTQ) and
Quantization-Aware Training (QAT). While QAT improves
performance through full dataset retraining, it is resource-
heavy. PTQ is faster and less resource-demanding but may
reduce performance.Current quantization algorithms like
DFQ[12], AdaRound[13], and BRECQ[14], optimized for
CNNs, underperform with ViTs. The distinct architecture of

ViTs necessitates bespoke quantization methods, underscor-
ing the need for new algorithmic approaches in this domain.

To improve ViT efficiency, researchers have developed
various quantization strategies. I-BERT[15] and FQ-ViT in-
troduce innovative methods like Powers-of-Two Scale and
Logarithmic Integer Softmax, targeting key components
like LayerNorm and Softmax, thus advancing ViT quanti-
zation. PSAQ-ViT[16] presents a data-free approach lever-
aging patch similarity for enhanced quantization efficiency.
In contrast, RepQ-ViT[17] separates quantization from in-
ference, addressing distribution imbalances in LayerNorm
and Softmax activations. These methods signify the ongoing
advancements and refinement in ViT quantization.

However, existing quantization methods primarily ad-
dress 2D ViT, leaving 3D ViT models less explored. Thus,
this paper investigates quantization challenges specific to 3D
perception models.

3. METHOD

3.1. 2D ViTs’ Standard Structure

The vision transformers introduce a novel shift in image pro-
cessing by replacing traditional CNN convolutional layers
with self-attention mechanisms. ViT breaks down an image
into patches processed by a transformer encoder, focusing
on key features and diminishing minor ones, as shown in
Figure 2. To enhance performance on larger images, a hybrid
model merges convolutional layers for spatial reduction with
self-attention layers to keep long-range patch dependencies.
This approach aims to blend the best of both worlds, offering
a robust solution for complex image-processing tasks.

Vision Transformer (ViT) Transformer Encoder
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Fig. 2: The architecture of ViT, the left panel shows the image
division and position embedding process and the right panel
presents a standard encoder architecture that contains the mul-
tihead attention layer.

3.2. 3D Multi-Modal ViT Model

In autonomous driving, integrating data from diverse sensors
is critical. Traditional approaches often employ separate en-
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coders for each sensor, leading to complex fusion algorithms
that hinder system speed and complicate training. UNITR ad-
dresses these issues by introducing two modal-agnostic trans-
former blocks that leverage the complementary features of 2D
and 3D data. This method simplifies fusion, enhancing sys-
tem efficiency and training manageability.

In image perspective analysis, we classify multi-modal to-
kens by their camera perspective positions into specific sets,
leveraging DSVT[ 18] for 2D cross-modal interactions within
these mixed-modality groups.

UNITR addresses the computational intensity of tradi-
tional 2D to 3D conversion methods by introducing a non-
trainable, precomputable technique for efficiently mapping
image patches to 3D, enhancing 3D segmentation efficiency
and overcoming conventional method limitations.

3.3. Distributions of Attention Score and LayerNorm Ac-
tivations in 2D and 3D ViT Model

Analyzing 2D ViT and UNITR for 3D object detection re-
veals apparent numerical differences. Reluctance to quan-
tize Softmax to avoid accuracy[19] loss leads to CPU-GPU
data transfers for de/re-quantization, maintaining hardware’s
dependence on floating-point operations. This increases re-
source usage and slows inference, complicating performance
optimization.

In 2D ViT, the Softmax operation transforms the attention
scores of the MSA module into probabilities, constraining the
values within the (0, 1) interval:

exp x;

- ekl (1)
D=1 €XP T

Softmax(x); := , where x = [z, ...

Utilizing the exponential function in the Softmax activation
produces a skewed attention map distribution, primarily fo-
cused on lower values, with more than 99% of activations
falling below 0.4, as illustrated in Figure 3. The remaining 1%
of higher activations are crucial, representing key patch corre-
lations utilized by the MSA module. Previous work highlights
that higher image resolutions and more minor patches bene-
fit model performance. However, these adjustments signifi-
cantly increase attention maps’ computational load and stor-
age, impacting inference efficiency. Therefore, it is crucial to
efficiently preserve these essential components during quan-
tization to maintain model performance.

LayerNorm is commonly employed in transformers and
involves several nonlinear operations. This operation normal-
izes input activations along the channel dimension, computes
statistical metrics X and 0 X at each forward step, and nor-
malizes the input X . Subsequently, affine parameters y and 3
rescale the normalized input to another learned distribution.
We describe the normalization process as follows:

Xn,: - E[Xn,]

Var[X,,.] + € °r+h (2)
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Fig. 3: The histogram of the Softmax activation after the first
MSA module in Swin-Transformer and UNITR is presented.
It is evident that the distribution is highly unbalanced, with the
majority concentrated in small values (green) and a minority
scattered in large values (red).

Figure 4 displays boxplots of post-LayerNorm activation
distributions in Swin-Transformer and UNITR. Both models
show notable inter-channel variations, with some channels
having significant min-max differences. Traditional quanti-
zation struggles with these fluctuations, risking significant er-
rors. Uniformly applying quantization scales across channels
in such cases results in unacceptable inaccuracies. Alterna-
tives like group quantization[20] or channel quantization[21],
assigning unique parameters to different groups or channels,
might be more effective.

3.4. Quantization Scheme For 3D Multi-Modal ViT Model
3.4.1. Softmax

In 2D ViT research, uniform quantization of attention maps
caused significant performance declines in various models.
FQ-ViT introduces log2 quantization with i-exp, ensuring
consistency between full-precision and quantized maps, en-
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Fig. 4: Boxplots of channel activations after the first mod-
ule of LayerNorm in Swin-Transformer and UNITR are dis-
played. Clearly, there are significant inter-channel variations.

hancing quantization efficiency.

N — clip (10g2 {Mw ,0,2" — 1>

i — exp(Xq)
=N — Attnq 3)

LIS(s - Xq) =

The equation N = 2% — 1 relates to the quantized input
Xq, where s represents the quantized input and scale.

The authors achieve a fully fixed-point inference for Soft-
max based on this process. However, due to non-linearity,
Softmax cannot follow a binary arithmetic pipeline, and the
exponential arithmetic within it is typically not supported by
pure integer logic units. To address this issue, I-ViT proposes
the Shiftmax approximation method. Expressed by the equa-
tion 4, Shiftmax approximates the non-linear function, allow-
ing for the precise and efficient integer computation of Soft-
max using straightforward hardware logic.

2981 o [Sp - (=1)] /241
=Sa - [((=r) > 1) + Io] ()
In equation 4, Iy = |1/Sa]. The above completes the

approximation, namely Sa- leyp = eSa1a where SA can
be simplified through fractional simplification.

3.4.2. LayerNorm

Figure 4 shows notable channel variations in the LayerNorm
layer input. FQ-ViT introduces Power-of-Two Factor (PTF), a
simple yet effective LayerNorm quantization method to tackle
this. PTF assigns unique factors to each channel, bypassing
the need for varied quantization parameters.

With N = 2° — 1, Xq and s representing the quantized
input and scale, the authors accomplished fully fixed-point
inference for Softmax based on the described procedure.

Yq = [AXq + B] + 2Dout

sign(A) - NoXq + |B - 2V]
= L 2N1

-| + ZPout @)

I-ViT improves the lightweight integer iteration method
through a shift-based approach, aiming to achieve maximum
convergence through iterative exploration. We modify the
stopping criterion to the number of iterations for convenient
hardware implementation.

L1 = (I + [Var(l:)/1;]) /2
= (I; + | Var(z)/1;]) > 1 (6)

In equation 6, I; represents the result of the ¢ — th itera-
tion, and I is initialized. The entire iteration stops when
Iipy > I

4. EXPERIMENTS

4.1. Implementation Details

The UNITR architecture employs the DVFE layer to tokenize
image and LiDAR data for voxelizing point clouds. Detection
tasks utilize a grid of 0.3mx0.3mx8.0m, while segmentation
tasks utilize 0.4mx0.4mx8.0m. Patch tokenizer downscales
images to a 32x88 resolution. UNITR blocks utilize weight-
sharing to enhance modality representation learning, optimiz-
ing multimodal data integration.

Our research employs the comprehensive nuScenes dataset,
known for its extensive annotations ideal for 3D object detec-
tion tasks[22]. This dataset comprises 40,157 instances, each
with six monocular camera images for a 360-degree view
and 32-beam LiDAR data. We emphasize metrics like the
nuScenes detection score (NDS) and mean average precision
(mAP) for 3D object detection. We randomly select a cali-
bration subset of 20 training images and assess the model’s
performance using the validation set.

Our work adopts symmetric channel-wise quantization for
weights and asymmetric per-layer quantization for activation
functions, ensuring model optimization. The MinMax algo-
rithm serves as the standard for weight quantization, facilitat-
ing consistent comparative analyses across different model ar-
chitectures.We conduct quantitative experiments on Weights,
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Activations, Attention scores, and Layernorm activations. In
the experimental tables, we abbreviate these components as
W, A, Attn, and LN to streamline presentation and enhance
clarity.

4.2. Quantization Results on NuScenes Dataset

As depicted in Table 1, we subject UniTR to 8-bit FQ-ViT
quantization. While there is a slight performance decrease
compared to FP32, it exhibits outstanding performance in Li-
DAR and camera fusion methods. On the validation dataset,
employing FQ-ViT for 8-bit quantization of UNITR yields
NDS and mAP scores of 73.0% and 70.0%, respectively, sur-
passing FP32 BEVFusion and achieving quantization with
lower bit precision. Even when compressing UniTR to 4 bits,
its accuracy remains 71.5%. The performance of the model
quantization algorithm using I-ViT on UniTR mirrors these
results. Furthermore, as shown in Table 2, we conduct quanti-
zation experiments on UNITR for the BEV map segmentation
task. Despite a reduction in performance compared to FP32,
our quantized results outperform other listed 3D models.

Methods W/A/Attn/LN NDS  mAP
FusionPainting[23] FP32 0.707 0.665
TransFusion[24] FP32 0.713 0.665
AutoAlignV2[25] FP32 0712 0.671
UVTR[26] FP32 0.702  0.654
Deeplnteraction[27] FP32 0.726  0.699
. FP32 0.714  0.685
BEVFusion[11] FPI6INTS  0.708 0.677
UNITR FP32 0.731 0.701

. 8/8/8/8 0.730  0.700
UNITR(FQ-VIT) 4/8/8/8 0715 0.679

. 8/8/8/3 0.729 0.693
UNITR(I-VIT) 4/8/8/8 0.708  0.655

Table 1: Performance of FQ-ViT and I-ViT methods for 3D
object detection tasks on nuScenes (val) dataset.

4.3. Comparison with State-of-the-art Methods

We explore popular post-training quantization methods, in-
cluding MinMax, EMA[32], Percentile[33], and OMSE[34].
We opt for FQ-ViT and I-ViT, two methods capable of fully
quantizing the transformer structure in the 2D domain. Our
numerical analysis predicts these methods would also be ef-
fective in the 3D domain. To validate the effectiveness of
our proposed methods, we conduct experiments on different
quantization strategies using the nuScenes dataset and report
the overall NDS and mAP results in Table 3. Most current
methods have yet to achieve complete quantization of the vi-
sion transformer, whereas our FQ-ViT and I-ViT methods

have successfully fully quantized the transformer results. Fur-
thermore, our experimental results indicate that the quantiza-
tion methods used in the traditional 2D domain are equally
effective in 3D object detection. For example, our FQ-ViT
achieves 73.0% NDS and 70.0% mAP on UNITR with 8-bit
quantization of all modules, while I-ViT achieves 72.9% NDS
and 69.3% mAP.

Methods W/A/Attn/IN NDS  mAP
Full Precision FP32 0.731 0.701
MinMax 8/8/8/8 0.676  0.627
EMA[32] 8/8/8/8 0.689 0.646
Percentile[33] 8/8/8/8 0.255 0.147
OMSE[34] 8/8/8/8 0.260 0.155
FQ-ViT 8/8/8/8 0.730 0.700
I-ViT 8/8/8/8 0.729 0.693

Table 3: Comparison of the 3D object detection results with
state-of-the-art quantization methods on the nuScenes dataset.

4.4. Ablation Studies

Table 4 presents the effects of PTF and LIS in FQ-ViT,
and Shiftmax and ShiftGELU in I-ViT—on performance.
These are assessed on the nuScenes validation set across full-
precision and quantized UNITR models, using 8-bit weights
and activations via the MinMax method as the benchmark.

To delve deeper into the effectiveness of our methods, we
conducted performance tests and quantization effect analyses
on the PTF and LIS of FQ-ViT, as well as the Shiftmax and
I-LayerNorm of I-ViT, as part of our ablation studies. The ex-
perimental results indicate that the FQ-ViT and I-ViT quan-
tization algorithms proposed for the 2D domain maintained
robust performance in 3D object detection and surpassed tra-
ditional quantization methods.

Methods PTF LIS NDS mAP
Full Precision - - 0.731 0.701
X X 0.676 0.627

. X v 0.700  0.655
FQ-viT v x 0.697 0.650
v v 0.730  0.700

Methods Shiftmax I-LayerNorm NDS  mAP
X x 0.676  0.627

. X v 0.702  0.658
-viT v x 0.695 0.648
v v 0.729 0.693

Table 4: Ablation studies of 3D object detection results for
FQ-ViT and I-ViT on the nuScenes dataset.
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Methods W/A/Attn/LN  Drivable Ped. Cross. Walkway Stop Line Carpark Divider Mean loU
PointPillars[28] FP32 72.0 43.1 53.1 29.7 27.7 37.5 43.8
CenterPoint[29] FP32 75.6 48.4 57.5 36.5 31.7 41.9 48.6

PointPainting[30] FP32 75.9 48.5 57.1 36.9 34.5 41.9 49.1

MVP[31] FP32 76.1 48.7 57.0 36.9 33.0 422 49.0
BEVFusion[11] FP32 85.5 60.5 67.6 52.0 57.0 53.7 62.7

UNITR FP32 90.4 73.1 78.0 67.2 67.7 63.4 734
UNITR(FQ-ViT) 8/8/8/8 89.7 71.8 76.3 65.3 66.6 61.8 71.9
UNITR(FQ-ViT) 4/8/8/8 84.9 61.0 64.8 539 54.1 46.7 60.9
UNITR(-ViT) 8/8/8/8 90.0 72.0 76.8 65.7 66.8 62.5 72.3
UNITR(I-ViT) 4/8/8/8 90.0 60.9 53.8 54.6 66.6 46.8 60.9

Table 2: The quantized UniTR outperforms state-of-the-art multi-sensor fusion methods in BEV map segmentation on the
nuScenes validation set, demonstrating the effectiveness of our quantization strategy for semantic 3D perception tasks.

5. CONCLUSIONS

In this paper, we initially investigate the numerical distribu-
tion of 2D and 3D vision on Layernorm and Softmax, where
we observe an issue of uneven distribution in both. Conse-
quently, we introduce the methods FQ-ViT and I-ViT, which
demonstrate effective performance in 2D, into the 3D mul-
timodal algorithm UNITR. Compared to traditional uniform
quantization methods, which significantly degrade model per-
formance when quantizing 3D vision, our introduced FQ-ViT
and I-ViT maintain commendable results in 3D vision. The
quantized 3D vision transformer achieves performance com-
parable to the full-precision model, and even at lower bit rates,
such as 4-bit, the performance of mmodels remains robust. In
summary, we provide a higher baseline for future work and
consider implementing full integer quantization for 3D multi-
modal vision.
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