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ABSTRACT

Joint learning of scene parsing and depth estimation remains a chal-

lenging task due to the rivalry between the two tasks. In this paper,

we revisit the mutual enhancement for joint semantic segmentation

and depth estimation. Inspired by the observation that the compe-

tition and cooperation could be reflected in the feature frequency

components of different tasks, we propose a Frequency Aware Fea-

ture Enhancement (FAFE) network that can effectively enhance

the reciprocal relationship whereas avoiding the competition. In

FAFE, a frequency disentanglement module is proposed to fetch the

favorable frequency component sets for each task and resolve the

discordance between the two tasks. For task cooperation, we intro-

duce a re-calibration unit to aggregate features of the two tasks, so

as to complement task information with each other. Accordingly,

the learning of each task can be boosted by the complementary

task appropriately. Besides, a novel local-aware consistency loss

function is proposed to impose on the predicted segmentation and

depth so as to strengthen the cooperation. With the FAFE network

and new local-aware consistency loss encapsulated into the multi-

task learning network, the proposed approach achieves superior

performance over previous state-of-the-art methods. Extensive ex-

periments and ablation studies on multi-task datasets demonstrate

the effectiveness of our proposed approach.
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•Computingmethodologies→Computer vision;Multi-task

learning.
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1 INTRODUCTION

Thanks to the development of deep neural networks, the perfor-

mances of vision tasks have been boosted to an unprecedented level.

In the real world, we are able to solve multiple tasks at the same

time and take advantage of the interrelation between variable sub-

tasks. As a result, many efforts have been made on intelligent yet

competent multi-task learning in recent years. In scene perception

and understanding, depth estimation and semantic segmentation

are two elementary problems as the former perceives 2.5D informa-

tion for recovering the scene and the latter helps to conceive the

scene. Although the deep-learning based methods have achieved

great success in these two individual tasks [2, 4], the collaboration

between the monocular depth estimation and semantic segmenta-

tion is overlooked. On the one hand, to make joint-optimization

of the two tasks whereas restricting the computation head, a com-

mon practice is to share the same encoder and apply a multi-head

architecture for regression. On the other hand, due to internal com-

petition and trade-offs, sub-optimal performance for each task is

usually observed.

Conventional deep multi-task learning approaches of monocular

depth estimation and semantic segmentation aim at sharing repre-

sentations between them [45]. But due to the competition between

the two tasks, joint learning of segmentation and depth estimation

remains a challenging task. Some works have been proposed to take
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Figure 1: Features and results of MTI-Net [37] and ours. 𝐹
represents the feature map and 𝑃 represents prediction of

each task.𝐺𝑇 represents ground truth of each task. 𝑀𝑇𝐼 rep-
resents our baselineMTI-Net.𝑂𝑢𝑟𝑠 represents our FAFE-Net.
𝑠 and 𝑑 denote segmentation and depth estimation respec-

tively. For the features in an object, the yellow box indicates

that our segmentation feature within an object has more

low-frequency components, resulting in better segmenta-

tion results. Similarly, the green box shows that the depth

feature in an object is much smoother in our results than

MTI-Net.

frequency domain knowledge into consideration in computer vision

tasks, such as those for designing attention modules [34], for solv-

ing super-resolution problems [41], and for semantic segmentation

tasks [19] and etc. However, how to exploit the frequency domain

information to leverage the performance of multi-task learning,

remains an open question.

In this paper, we manage to solve the problem of collaboration

between tasks in a perspective of the frequency domain. Firstly, we

reveal that there is not only correlation but also competition be-

tween the two tasks. On the one hand, promoting their correlation

can get mutual enhancement, on the other hand, we need to avoid

the competition between them to get better task-dependent repre-

sentations. Secondly, the two tasks should focus on the different

frequency bands in the domain. As shown in Figure 1, the features

are consistent with the prediction results. For example, to get a

better segmentation performance, the segmentation task should

pay more attention to high-frequency features at the edge of an

object and more low-frequency features within an object. For the

depth estimation task, the low-frequency feature can smooth out

the effect, while the high-frequency feature can deal with situations

where there is a depth jump.

Besides the network architecture, we also consider the relation-

ship of segmentation and depth estimation from the perspective of

loss function. Intuitively, for the same object, the corresponding

pixels on the segmentation map should have the same class label,

whereas the values on the depth map should also be similar in a

local region.

Based on this, we propose a local-aware consistency loss, such

that for a certain area of the same object, the variance distribution

of segmentation and depth predictions within a local area should

be consistent, which could further improve the multi-task learning

performance.

To summarize, the contribution of this paper is:

• For multi-task learning, we propose a Frequency Aware Fea-

ture Enhancement (FAFE) network that can effectively en-

hance the reciprocal relationship whereas avoiding the com-

petition in the frequency domain. We introduce the FAFE

network building upon two main modules: frequency disen-

tanglement module and a feature re-calibration unit.

• We propose a new loss called local-aware consistency loss

based on the analysis of that semantic segmentation task

results should be consistent with depth estimation results

within a local region of the same object.

• Extensive experiments on the challenging NYUD-v2 and

Cityscapes datasets demonstrate the effectiveness of the pro-

posed approach. Our approach achieves state-of-the-art re-

sults on NYUD-v2 and Cityscapes on jointly optimizing both

the depth estimation and the segmentation tasks.

2 RELATEDWORKS

Semantic segmentation and Depth estimation. Semantic seg-

mentation is a high-level vision task that aims to facilitate per-pixel

label classification. Recent methods designed for semantic segmen-

tation are mainly based on deep neural networks. Long et al. [27] is

the pioneering work that leverages a fully convolutional network

(FCN) to achieve remarkable segmentation performance. Subse-

quently, many segmentation networks have been proposed such as

DeepLab series [3–5], PSPNet [46], and so on, which take advantage

of atrous convolutions and pyramid module to effectively increase

the receptive field and fuse convolutional features from multiple

scales.

Many efforts have been devoted to monocular depth estimation

task. Previous methods are generally based on hand-crafted features

and graphical models like Markov Random Field (MRF) [31, 32].

Recently some works adapt image classification networks into fully

convolutional forms to predict depth on different sizes of inputs [8,

23]. Adabins [2] proposed to divide the depth range into different

bins, the final depth values are estimated as linear combinations

of the bin centers. These works only focused on an individual task

without jointly optimizing the depth estimation and scene parsing

together.

Multiple Task Learning (MTL). Many computer vision prob-

lems are multi-modal, for example, it is expected to segment the

lane markings, detect vehicles, estimate depth in autonomous driv-

ing. The multi-modal requirements have motivated researchers to

develop Multiple Task Learning (MTL), and deep MTL has been

widely used so that a deep learning model can infer all desired task

outputs [6, 10, 16]. There are a lot of successful multi-task pairs

that have yielded fruitful results such as segmentation and depth

estimation [37, 42], classification and detection [11, 29], detection

and segmentation [7, 13], and so on.
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Figure 2: Architecture overview. Our Frequency Aware Feature Enhancement (FAFE) network contains two main modules: a

Frequency Disentanglement (FD) module to extract the high-frequency and low-frequency features of each task respectively

and a Feature Re-calibration (FR) unit to make full use of the multi-task learning advantages. 𝑃𝐼 means the pre-interaction

module and the subscripts 1 and 2 means single-input and dual-input. 𝐹𝐷 denotes frequency disentanglement module. 𝐿 de-

notes the loss, 𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is our local-aware consistency loss. Subscripts 𝑠 and 𝑑 represent segmentation and depth estimation

task respectively. Superscripts 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ represent low-frequency and high-frequency, respectively. Our approache could

also be easily extended to 𝑁 predictions in order to add progressive supervision. This can be done simply by embedding our

FAFE network in front of each prediction.

The main topic in MTL research is to improve generalization of

the original single task by sharing representations between related

tasks [36]. Some works aim to improve different task features diffu-

sion to strengthen task performance. MTAN [26] proposed a soft-

attention module for each task so that each task has its task-specific

feature. PSD [47] propose a pattern-structure diffusion framework

to mine and propagate task-specific and task-across pattern struc-

tures in the task-level space for Multi-task Learning. MTI-Net [37]

proposed to create interaction in different scales between affinity

tasks to make the architecture learn more representative features.

However, the aforementioned works do not analyze the rivalry

between the tasks. CSTRACK [20] analyzed the joint learning de-

tection and ReID task, which reveals that the competition of them

inevitably hurts the learning of task-dependent representations,

they come up with a decouple module when split task-specific

feature from source common feature. It not only effectively miti-

gate the competence, but also improve the collaborative learning

capability between different tasks. Meanwhile, decouple module

is also to be used in some single tasks to further improve feature

representation [25, 40, 44].

A series of classic operations of deep convolution neural net-

works, such as feature aggregation and some attention networks,

can be treated as implicit modeling of the frequency domain. Early

works are combining traditional frequency decomposition meth-

ods like Wavelet Transform (WT) [41] and Discrete Cosine Trans-

form (DCT) [39] to explicitly model features in the frequency do-

main. Recently, FCANet [34] makes a detailed derivation of DCT. In

the segmentation task, li et al. [19] uses decoupled supervision to

model the object body and edge, which correspond to the high and

low-frequency of the image. In our join segmentation and depth

estimation task, we believe each task needs to explicitly extract

different frequency band information, and the interaction between

low-frequency and high-frequency of these two tasks should be

considered to disentanglement into different feature distributions

for each task.

3 METHOD

In this section, we describe the proposed Frequency Aware Feature

Enhancement (FAFE) network for simultaneous depth estimation

and scene parsing. We first present an overview of our network

architecture in section 3.1, and then introduce the details of the

FAFE network in section 3.2. Finally, the local-aware consistency

loss function is illustrated in section 3.3.

3.1 Network Architecture

The joint segmentation and depth estimation network we used

could be based on any backbone such as HRNet [35]. Figure 2 is the

network architecture overview, which shows that our Frequency

Aware Feature Enhancement (FAFE) network is inserted before

the multi-task predictions. Similarly, in recent multi-task networks

such as PAD-Net [47] which have two stage predictions, our FAFE

network is inserted before intermediate predictions and final pre-

dictions separately. And MTI-Net [37] has a backbone that extracts

multi-scale features and intermediate predictions are made at each

scale, so our FAFE network is inserted before the intermediate

predictions at each scale.
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3.2 Frequency Aware Feature Enhancement
(FAFE) Network

Our Frequency Aware Feature Enhancement (FAFE) network is

designed following two guidelines. First, it should make differ-

ent branches learn task-specific features in the frequency domain

since distinct tasks typically encourage learning different types

of features corresponding to a particular frequency. Second, it is

designed for making one task could get information from the other

task which the former task needed but don’t include. To meet the

first requirement, the feature map generated by the backbone is

firstly transferred into different feature maps for different tasks by

an interaction module inspired from [20], and then a frequency

disentanglement module is followed to learn the high-frequency

and low-frequency features of each task respectively. This disen-

tanglement module is capable to generate task-specific features.

Our frequency disentanglement module is shown in Figure 3. For

the second target, we use an attention-based neural network to

fuse the corresponding frequency features of the other task, as

shown in Figure 5. To sum up, Our FAFE network, which con-

sists of Pre-Interaction (PI), Frequency Disentanglement (FD) and

Feature Re-calibration (FR) modules, solves the competition and

cooperation trade-off in multi-task learning effectively.

Pre-interaction (PI) Module. Our pre-interaction (PI) module

is derived from the cross correlation module of CSTrack [20], which

consists of a intra-attention part and a inter-attention part. The

original cross correlation module has one input and two outputs.

We expand it so that the module can accept two inputs. Specifically,

the two inputs are respectively passed through two different con-

volution layers, followed by an avg-pooling operation to generate

a fixed-size feature map, the subsequent attention computation is

the same as the original cross correlation module. In FAFE, we use

single-input-PI to complete the initial interaction, and the dual-

input-PI is used after the frequency disentanglement module to get

better feature representation by fusing different frequency feature

maps. Take dual-input-PI for example, the implementation steps

are as follows:

𝑉1,𝑉2 = 𝑓 𝑢𝑛𝑐1 (𝐼1), 𝑓 𝑢𝑛𝑐2 (𝐼2)

𝑀1 = 𝛼1 · (𝑉
�
1 ·𝑉1) + (1 − 𝛼1) · (𝑉

�
1 ·𝑉2)

𝑀2 = 𝛼2 · (𝑉
�
2 ·𝑉2) + (1 − 𝛼2) · (𝑉

�
2 ·𝑉1)

𝑂1,𝑂2 = 𝑉1 · 𝑀1 +𝑉1,𝑉2 · 𝑀2 +𝑉2

(1)

where 𝐼1 and 𝐼2 stand for the dual inputs, 𝑓 𝑢𝑛𝑐1 and 𝑓 𝑢𝑛𝑐2 con-
tain a convolution layer followed by an average -pooling operation

and a reshape operation respectively. For one-input-PI, 𝐼1 is equal to
𝐼2 and 𝑓 𝑢𝑛𝑐1 is equal to 𝑓 𝑢𝑛𝑐2. 𝑀1 and 𝑀2 represent the attention

weight matrix of 𝑉 1 and 𝑉 2, 𝛼1 and 𝛼2 are the balanced weights of

intra-attention and inter-attention. 𝑂1 and 𝑂2 are the final outputs

after interaction.

Frequency Disentanglement (FD). As demonstrated in [34],

it is beneficial to convert features in the spatial domain to the

frequency domain. First of all, since the original signal can be

recovered perfectly by the transferred signal using inverse trans-

formation, it is safe to utilize features in the frequency domain to

do analysis without worrying about information loss. Moreover,

the strength of the frequency feature lies in the fact that its energy

arrangement is more compact, and it is well known that the natural
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Figure 3: Frequency disentanglement module. In FD mod-

ule, we use discrete cosine transform (DCT) to get each

frequency component, and then two weight matrices are

learned for each task to get low and high-frequency features.

𝑐 means convolution operation. 𝑇 represent semantic seg-

mentation task or depth estimation task. 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ rep-

resents the low-frequency and high-frequency respectively.

image is frequency band limited and hence we can expect feature

manipulation in the frequency domain is more robust against its

counterparts in the spatial domain, and this might be the reason

that recent works of exploiting frequency transformation in neu-

ral network achieve great success [19, 34]. Although simple, the

frequency band is divided more finely so that different frequency

bands can be chooses.

For each task, we generate two feature maps using two convolu-

tion layers, representing low-frequency branch and high-frequency

branch respectively. And then we use a two-dimensional (2D) DCT

to get 2D DCT frequency spectrum, which can be written as:

𝑓 2𝑑ℎ,𝑤 =
𝐻−1∑

𝑖=0

𝑊 −1∑

𝑗=0

𝑥2𝑑𝑖,𝑗 𝑐𝑜𝑠 (
𝜋ℎ(𝑖 + 0.5)

𝐻
)𝑐𝑜𝑠 (

𝜋𝑤 ( 𝑗 + 0.5)

𝑊
),

𝑠 .𝑡 .ℎ ∈ (0, 1, ..., 𝐻 − 1),𝑤 ∈ (0, 1, ...,𝑊 − 1)

(2)

𝑥2𝑑𝑖,𝑗 is the pixel value at location (𝑖, 𝑗). 𝑐𝑜𝑠 () represents the co-

sine function. 𝐻 and𝑊 are the height and the width of the inputs

respectively. The value at each position of the frequency spec-

trum 𝑓 2𝑑
ℎ,𝑤

represents corresponding frequency component. For

low-frequency/high-frequency branch, we use an adaptive weight

matrix𝑊 2𝑑
ℎ,𝑤

to learn the proportion of the frequency components.

The details of extraction procedure is presented in Figure 4. After

that, we get low-frequency/high-frequency feature map through

inverse DCT (IDCT).

The whole process of FD module can be expressed as follows:

𝐹 𝑙𝑜𝑤𝑇 = 𝐼𝐷𝐶𝑇 (𝐷𝐶𝑇 (𝑐𝑜𝑛𝑣1 (𝐹𝑇 )) ·𝑊
𝑙𝑜𝑤
𝑇 ))

𝐹
ℎ𝑖𝑔ℎ
𝑇 = 𝐼𝐷𝐶𝑇 (𝐷𝐶𝑇 (𝑐𝑜𝑛𝑣2 (𝐹𝑇 )) ·𝑊

ℎ𝑖𝑔ℎ
𝑇 ))

(3)

where the subscript𝑇 can represent semantic segmentation task

or depth estimation task, 𝐹𝑇 represents the input feature map while

𝑐𝑜𝑛𝑣 represents convolution operation. 𝐷𝐶𝑇 and 𝐼𝐷𝐶𝑇 represents

Discrete Cosine Transform and Inverse Discrete Cosine Transform
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respectively.𝑊
ℎ𝑖𝑔ℎ
𝑇 and𝑊 𝑙𝑜𝑤

𝑇 are the adaptive weight matrices of

low-frequency and high-frequency. 𝐹 𝑙𝑜𝑤𝑇 and 𝐹
ℎ𝑖𝑔ℎ
𝑇 represent the

output feature maps of low-frequency and high-frequency.

(a) (b) (c) (d)

1 1 0.3

1 0.4 0.1

1 1 1

1 1 0.3

1 0.4 0.1

1 1 1

1 1 0.3

1 0.4 0.1

1 1 1

Figure 4: Illustration of using adaptive weight matrix to get

low/high frequency components. (a) Original 2D DCT fre-

quency spectrum. (b) Adaptive weight matrix. (c) Weighted

2D DCT frequency spectrum. (d) Visualization of frequency.

As described above, we get the initial low-frequency feature map

and high-frequency feature map. And then these two feature maps

are processed by the dual-input-PImodule to get better low and high

frequency feature representation. Each task has learned its own

low-frequency and high-frequency features after completing the

frequency disentanglement module, which alleviate rival effectively.

Feature Re-calibration (FR). It is worth noticing that the fea-

tures extracted by the frequency disentanglement module alone

considerate only task-specific features without taking collabora-

tion between the segmentation and the depth estimation tasks into

consideration. We argue that extracting features by modeling the

collaboration between tasks will be beneficial. For example, some

edges detected in the high-frequency feature maps of segmentation

are also helpful for the depth estimation task to decide where are the

depth boundaries. To achieve this goal, the low-frequency features

of the segmentation task are sent to the SE attention module [14] to

generate the re-calibration features, which is added back to the low-

frequency features of the depth estimation task, so that the depth

estimation task can learn some useful low-frequency features from

segmentation features. We implement the feature re-calibration

of other frequency features in the same way which could further

improves both the segmentation and depth estimation performance.

The FR unit is shown in detail in Figure 5.

3.3 Local-aware Consistency Loss

Following the loss function settings of MTI-Net [37], we use the 𝐿1
loss for depth estimation and the cross-entropy loss for semantic

segmentation. Besides these, we propose a local-aware consistency

loss in order to dig the similarity features of segmentation results

and depth estimation results. For the segmentation task, the pre-

diction results of the same object are expected to be consistent.

Meanwhile, the depth estimation results within an object should be

smooth.Based on this intuition, the local-aware consistency loss is

proposed to learn the smooth similarities between them. For each

pixel in segmentation prediction 𝑃𝑠 , we calculate the mean of the

3x3 neighborhood centered at this point and generate a mean map

𝑀𝑃𝑠 . Then we use the difference 𝑃𝑠 and 𝑀𝑃𝑠 to get consistency

map of segmentation 𝐶𝑠 . In 𝐶𝑠 , the value of each pixel represents

the segmentation consistency of the 3x3 neighborhood. If the 3x3

neighborhood belongs to the same object, then the corresponding

value in 𝐶𝑠 should be very small.

Similar to segmentation, we can get depth consistency map 𝐶𝑑 ,

which represents the smoothness of depth prediction. It is worth

noting that if the pixel value of 𝐶𝑠 is too large, this location is con-

sidered to be the edge of an object, so we don’t take the consistency

of this location into consideration.

We propose that the smoothness of segmentation and depth

should be consistent, so our local-aware consistency loss is calcu-

lated by 𝐿1 loss between the 𝐶𝑠 and 𝐶𝑑 . The consistency loss and

the whole loss are formulated as follows:

𝑀𝑃𝑖𝑇 =
1

𝑁

∑

𝑗 ∈𝒩 (𝑃𝑖
𝑇 )

𝑃
𝑗
𝑇

𝐶𝑖
𝑇 = (𝑃𝑖𝑇 − 𝑀𝑃𝑖𝑇 )

2

𝐿𝑐 = 𝐿1 (𝐶𝑠 ,𝐶𝑑 )

𝐿 = 𝜆1 · 𝐿𝑠 + 𝜆2 · 𝐿𝑑 + 𝜆3 · 𝐿𝑐

(4)

in which 𝑖 denotes a particular pixel in a map. 𝑇 means the

corresponding task like segmentation or depth estimation. 𝒩(𝑃𝑖𝑇 )

represents the neighbor set of 𝑃𝑖𝑇 . 𝐿𝑠 is cross-entropy loss for se-

mantic segmentation and 𝐿𝑑 is the 𝐿1 loss for depth estimation. 𝐿𝑐
is the local-aware consistency loss. 𝜆1, 𝜆2, 𝜆3 is the weight of each
loss and we set 𝜆1 = 1, 𝜆2 = 1, 𝜆3 = 0.1.

4 EXPERIMENT

4.1 Experimental setup

Datasets. We perform our experimental evaluation on NYUD-

v2 [33] and Cityscapes [21]. The NYUD-v2 dataset is a popular

indoor-scene image dataset, which has been widely used for depth

estimation [9] and semantic segmentation [12]. Following the pre-

vious work MTI-Net [37], we use 795 images for training and 654

images to test the final performance. In addition, we also adopt the

data augmentation method of MTI-Net [37] to get the augmented

training data. The Cityscapes dataset consists of outdoor scene

images with overall 19 semantic classes annotated for semantic

segmentation. Besides, Cityscapes also provides pre-computed dis-

parity maps which can be regarded as inverse depth labels. Similar

to MTAN [26], we use 7 categories CityScapes dataset and resize

the images to 128 × 256 to speed up the forward stage. The training

data are augmented following the previous work [37].

Implementation details. We build our framework based on

HRNet [35] backbone, with ImageNet-pretrained HRNet-18 for

ablation studies and HRNet-48 for the final results. The network is

trained for joint depth estimation and segmentation tasks in an end-

to-endmanner.We use the Adam optimizer with initial learning rate

1e-4, and batch size is set to 6. Totally 80 epochs are used for NYUD-

v2, and 200 epochs for Cityscapes. Note that when computing local-

aware consistency loss, we discard large values in 𝐶𝑠 and 𝐶𝑑 in

Equation 4 since these areas represent low consistency between

depth and segmentation and should be ignored. We implement it

by using a mask to neglect large value when computing the loss. In

particular, we set the threshold to 1.
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Figure 5: Feature re-calibration module. 𝑆𝐸 is the SE atten-

tion [14]. The plus sign denotes adding the re-calibration

feature from the other task. After feature re-calibration, the

feature map of segmentation task 𝐹
𝑓 𝑟
𝑠 integrates the fre-

quency information which is extracted by depth estimation

task while 𝐹
𝑓 𝑟
𝑑

is also learned from the segmentation task

branch.

Evaluation Metrics. For the evaluation of semantic segmen-

tation, we take the same metrics as [37, 42]: mean intersection

over union (mIoU), mean accuracy (mAcc) and pixel accuracy (Pix-

Acc). For the evaluation of depth estimation, we take the same

metrics as [1, 17, 26] : root mean squared error (rmse), average

relative error (rel), mean absolute error (mae), threshold accuracy

(𝛿𝑖 ) where threshold = 1.25, 1.252, 1.253. Specifically, on NYUD-v2

dataset, we follow MTI-Net [37], which mainly focuses on the root

mean squared error (rmse). For Cityscapes dataset, we mainly focus

on average relative error (rel) by following MTAN [26].

Baselines. On both NYUD-v2 and Cityscapes datasets, we com-

pare our FAFE network with several state-of-the-art multi-task

learning methods, such as PAD-Net [42] and MTI-Net [37]. Noted

that these two methods both have two intermediate auxiliary tasks,

which is surface normal estimation and contour prediction. For

fair comparison, we use the open-source code to reproduce their

works on the joint two tasks involving segmentation and depth

estimation, instead of four sub-tasks. Besides, the multi-task net-

work that learned more than two tasks like PAP-Net [47] without

open-source code is not included in our comparison.

Table 1: Ablation studies on NYUD-v2 dataset. + in first col-

umn denote the basis network plus our method component

while + in second column and third column denote the abso-

lute performance improvement. ↑ represents big number is

better and ↓ represents small number is better. The contents

in parentheses in the first row indicate the metrics we used.

Same rules apply to the rest table.

Method Seg (mIoU) ↑ Depth (rmse) ↓

Baseline (PAD) 35.53 0.627

+PI 37.69 (+2.16) 0.570 (+0.057)

+PI+FD 38.22 (+2.69) 0.560 (+0.067)

+FAFE (PI+FD+FR) 38.31 (+2.78) 0.558 (+0.069)

+FAFE+𝐿𝑐 39.24 (+3.71) 0.554 (+0.073)

Baseline (MTI) 37.19 0.549

+PI 38.46 (+1.27) 0.552 (-0.003)

+PI+FD 39.04 (+1.85) 0.534 (+0.015)

+FAFE (PI+FD+FR) 39.59 (+2.40) 0.531 (+0.018)

+FAFE+𝐿𝑐 39.91 (+2.72) 0.529 (+0.020)

4.2 Ablation studies

In Table 1 and 2 we reveal the results of our ablation studies on

NYUD-v2 and Cityscapes datasets, respectively. We conduct exper-

iments on two different network architectures, i.e., PAD-Net [42]

and MTI-Net [37], to verify the generalization capability and con-

tribution of FAFE components.

We focus on the NYUD-v2 dataset first (see Table 1), HRNet-18

backbone is used for PAD-Net [42] and MTI-Net [37]. The PAD-

Net baseline has lower performance (mIoU is 35.53 and rmse is

0.627) than the MTI-Net baseline (mIoU is 37.19 and rmse is 0.549).

However, PAD-Net’s segmentation accuracy even outperforms the

original MTI-Net after adopting our FAFE module and our proposed

consistency loss function (𝐿𝑐 ). As can be seen from the yellow-

colored row, the mIoU of segmentation is 39.24 and the rmse of

depth estimation is 0.554. As we mentioned above, frequency disen-

tanglement(FD) module could decouple entangled features in fre-

quency domain, feature Re-calibration module could make different

task features learn from each other to get more useful information.

Local-consistency loss could make the segmentation result more

better and depth result more smoother. We also have proved the

effectiveness of each component whether on PAD-Net baseline or

MTI-Net baseline,which shown in Table 1. Take the MTI-Net as

an example, the effect has been improved for both segmentation

(+1.85) and depth estimation (+0.015) after adding frequency disen-

tanglement (FD) module. When including the feature re-calibration

(FR) unit, another significant boost in performance is achieved (seg:

+2.40, depth: +0.018). Finally, using the auxiliary consistency loss

(𝐿𝑐 ) can further help to improve the performance of our predictions

(seg: +2.72, depth: +0.020).

Table 2 shows the ablation on Cityscapes dataset. Similar to

NYUD-v2 dataset, the baseline networks are PAD-Net and MTI-Net

and we adopted the same the backbone we used is HRNet-18. Being

consistent with the performance on NYUD-v2, Table 2 verified the

effectiveness of our frequency aware feature enhancement (FAFE)

network and the new consistency loss (𝐿𝑐 ). For PAD-Net baseline,
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Figure 6: Qualitative results of our FAFE network on NYUD-v2 dataset. 𝑀𝑇𝐼 𝑆𝑒𝑔 and 𝑀𝑇𝐼 𝐷𝑒𝑝𝑡ℎ represents MTI-Net segmen-

tation result and depth result respectively. 𝑂𝑢𝑟 𝑆𝑒𝑔 and 𝑂𝑢𝑟 𝐷𝑒𝑝𝑡ℎ represents FAFE-Net segmentation result and depth result

respectively.

Table 2: Ablation studies on Cityscapes dataset.

Method Seg (mIoU)↑ Depth (rel)↓

Baseline (PAD) 77.20 56.761

+PI 77.24 (+0.04). 43.409 (+13.352)

+PI+FD 77.40 (+0.20) 35.443 (+21.318)

+FAFE (PI+FD+FR) 77.45 (+0.25) 34.872 (+21.889)

+FAFE+𝐿𝑐 77.61 (+0.41) 31.011 (+25.750)

Baseline (MTI) 76.02 52.902

+PI 76.04 (+0.02) 49.856 (+3.042)

+PI+FD 76.17 (+0.15) 47.393 (+5.509)

+FAFE (PI+FD+FR) 76.22 (+0.20) 45.336 (+7.566)

+FAFE+𝐿𝑐 76.26 (+0.24) 41.932 (+10.970)

we observe 0.41 improvement on segmentation and 25.750 improve-

ment on depth estimation. For MTI-Net baseline, our results show

that the segmentation improves 0.24 in mIoU criteria and the depth

estimation observes 10.970 gain in rel criteria. The two indoor and

outdoor datasets validate the generalization ability of the proposed

approach.

Influence of prediction heads.

From Figure 2, we could observe that our Frequency Aware Fea-

ture Enhancement (FAFE) network is inserted before the multi-task

predictions, which means that our whole network architecture

could have multiple prediction heads. In order to verify the effec-

tiveness of our FAFE network on different architectures, we conduct

experiments to analyse the results of the our FAFE network with

different numbers of prediction heads. The models are based on

Table 3: Ablating the prediction heads on NYUD-v2.

Method seg (mIOU)↑ depth (rmse) ↓

1-predict 35.40 0.580

1-predict+FAFE+𝐿𝑐 36.49 (+1.09) 0.563 (+0.017)

2-predict 35.53 0.627

2-predict+FAFE+𝐿𝑐 39.24 (+3.71) 0.554 (+0.073)

3-predict 35.88 0.600

3-predict+FAFE+𝐿𝑐 38.12 (+2.24) 0.548 (+0.052)

HRNet-18 backbone and trained on NYUD-v2 dataset, and the con-

nection module between multiple prediction heads is borrowed

from PAD-Net [42]. As illustrated in Table 3, we can see that the

performances are generally improved after using our FAFE net-

work from one prediction head to three prediction heads. When

the number of prediction heads is 2, it has the highest performance

with our FAFE network. One of the potential reasons is that the

two prediction heads in our FAFE network is enough to help the

network to learn the task-specific features.

Influence of the parameters. In Table 4 we visualize the re-

sults of our ablation studies on NYUD-v2 using HRNet-18 backbone

to verify whether it is our FAFE network or the extra convolution

parameters that contributes to the multi-task improvements. We

removed some innovative operations such as 2D DCT for frequency

analysis, matrix multiplication for attention work. At the same time,

we keep the convolution operations in order to keep the same pa-

rameters. As shown in Table 4, compared to the network with the

same parameters, our FAFE shows a significant positive effect on

both segmentation and depth estimation results.
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Table 4: Influence of the parameters on NYUD-v2.

Method Params (M) Seg (mIoU)↑ Depth (rmse)↓

PAD+conv 17.67 36.27 0.543

PAD+FAFE 17.67 (+0) 39.59 (+3.32) 0.531 (+0.012)

Table 5: Comparison with the state-of-the-art on NYUD-v2.

(a) Results on depth estimation.

Method rmse↓ rel↓ mae↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑
HCRF [18] 0.821 0.232 - 0.621 0.886 0.968

DCNF [24] 0.824 0.230 - 0.614 0.883 0.971

Wang [38] 0.745 0.220 - 0.605 0.890 0.970

NR forest [30] 0.774 0.187 - - - -

Xu [43] 0.593 0.125 - 0.806 0.952 0.986

PAD-Net 0.485 0.139 0.361 0.814 0.962 0.992

MTI-Net 0.473 0.140 0.359 0.824 0.964 0.992

Ours 0.466 0.135 0.344 0.834 0.967 0.992

(b) Results on semantic segmentation.

Method PixAcc↑ mAcc↑ mIoU↑

FCN [27] 60.0 49.2 29.2

Context [22] 70.0 53.6 40.6

Eigen [8] 65.6 45.1 34.1

B-SegNet [15] 68.0 45.8 32.4

RefineNet-101 [21] 72.8 57.8 44.9

PAD-Net 72.92 57.61 44.79

MTI-Net 72.71 58.31 47.05

Ours 74.62 61.33 48.40

4.3 Comparison with the State-of-the-Arts

In this section, we compare our proposed method with various

state-of-the-art methods for Multi-task learning.

Comparison onNYUD-v2. Table 5 shows the comparison with

the state-of-the-art approaches on NYUD-v2.We use themulti-scale

HRNet-48 backbone and the PAD-Net and MTI-Net are reproduced

by removing two intermediate auxiliary tasks for fair comparison.

Since MTI-Net outperforms PAD-Net, we complete our model based

on MTI-Net. As is shown in Table 5, the results compared to MTI-

Net well demonstrates that our proposed approach can boost the

performance of previous works and achieves new SoTA results on

both depth estimation and semantic segmentation tasks. Figure 6

shows qualitative examples of the depth estimation and segmenta-

tion. We can observe that the regions within the red boxes indicate

our segmentation results are more consistent within the object than

the naive MTI without FAFE, and the yellow boxes indicate that

our depth results are smoother than MTI without FAFE.

Comparison on Cityscapes. Similar to NYUD-v2, the results

of PAD-Net and MTI-Net are reproduced on two tasks of segmen-

tation and depth estimation. In contrast to NYUD-v2, the effect

of PAD-Net is better than MTI-Net on Cityscapes dataset, so our

model is based on the PAD-Net. In semantic segmentation task, our

FAFE network achieves the best performance in all of the measure

metrics. However, since our baseline has already achieved a high

Table 6: Comparisonwith the state-of-the-art onCityscapes.

(a) Results on depth estimation.

Method rmse↓ rel↓ mae↓

Cross-Stitch[28] - 34.49 0.0154

MTAN[26] - 33.63 0.0144

MTI-Net 0.023 44.415 0.012

PAD-Net 0.023 29.650 0.011

Ours 0.023 28.833 0.011

(b) Results on semantic segmentation.

Method PixAcc↑ mAcc↑ mIoU↑

Cross-Stitch[28] 90.33 - 50.08

MTAN[26] 91.11 - 53.04

MTI-Net 94.42 85.35 78.37

PAD-Net 94.47 85.72 78.63

Ours 94.49 85.87 78.75

Figure 7: Qualitative results of our FAFE network on

Cityscapes dataset.

performance, the improvement of segmentation results is not par-

ticularly obvious. In depth estimation task, our model also achieves

the best results especially on the average relative error (rel) index.

The qualitative examples of the depth estimation and segmentation

on Cityscapes are shown in Figure 7.

5 CONCLUSION

In this paper, we proposed the Frequency Aware Feature Enhance-

ment (FAFE) network and a local-aware consistency loss for joint

segmentation and depth estimation. The FAFE network architec-

ture consists of a frequency disentanglement module and a feature

re-calibration unit, which can solve competition between segmenta-

tion and depth estimation while enhance the collaboration between

the two tasks in an end-to-end manner. Besides, the local-aware

consistency loss could improve these two tasks performance further

through strengthen collaboration between tasks. Experiments on

the NYUD-v2 and CityScapes datasets show that our method is

competitive with other methods. In the future, we may generalize

and improve the efficiency of our approach on other different tasks.
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