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Abstract

Financial asset price movement prediction is inherently chal-
lenging due to the non-stationary nature of financial mar-
kets, where data distributions shift over time. Existing meth-
ods often assume that the market is stationary, which limits
their applicability. To address this, we propose the Market-
State Jump Diffusion Framework(MSJD), which models
non-stationarity through two key components: an Explicit
Market-State Jump Diffusion Process(EMJD) and an Im-
plicit Market-State Jump Diffusion Process(IMJD). EMJD
captures the dynamics of diffusion, drift, and jump processes
governed by latent market states, formulated as stochastic dif-
ferential equations, to explicitly model non-stationarity and
solved via neural networks. IMJD integrates these compo-
nents into a multi-modal large language model, enabling
interpretable predictions across varying market conditions
through temporal point encoding and jump diffusion em-
beddings to learn the non-stationary implicitly. Additionally,
we introduce a general modality synthesizer that employs
a unified adversarial masking strategy to complete missing
modalities and fine-tune the prediction model. Extensive ex-
periments on real-world stock and cryptocurrency datasets
demonstrate that our method significantly outperforms ex-
isting approaches in the prediction of price movements. The
code is available in the supplementary material.

Introduction
Forecasting the price movement of a financial asset over
a specific period is a crucial task in economic analy-
sis.(Lewellen 2004). The global research community has re-
cently recognized the potential of deep neural networks in
the prediction of price movement. (Martinez-Miera and Re-
pullo 2019; Sezer, Gudelek, and Ozbayoglu 2020). How-
ever, these methods are typically trained to make predictions
in an assumed stationary environment (Ogasawara et al.
2010; Passalis et al. 2019; Kim et al. 2021), where the data
distribution is fixed over time.

In practice, stationary environments are rare. As shown
in Figure 1, real financial market environments are dynamic
and non-stationary (Li et al. 2014), which means the statisti-
cal process and joint distribution often change over time with
different change types and make the time series less pre-
dictable. For example, momentum characteristics and price
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Figure 1: Different types of change in price series statistical
properties and joint distribution over time. Through the Dif-
fusion/Drift/Jump process, we could formulate various dis-
tribution transformations.

changes show a positive correlation in trending markets
but a negative correlation in reversal markets (Avellaneda
and Stoikov 2008). This suggests that the role of eigen-
values is inextricably linked to the market environment in
which data are embedded, while the financial environment
changes rapidly alongside breaking news and global events
(Guéant, Lehalle, and Fernandez-Tapia 2013; Graves and
Graves 2012; Vaswani 2017).

Some work has attempted to use neural networks to de-
tect environmental changes in time series (Anderson 1976)
to learn price characteristics in nonstationary environments
(Shazeer et al. 2017; Hyndman and Athanasopoulos 2018;
Brown et al. 2020; Sawhney et al. 2020; Yang et al. 2020).
However, environmental changes in the market often stem
from a variety of causes, some of which may be reflected in
time series data, others in news text or images of a company
spokesperson’s press conference (Brown et al. 2020). Some
recent attempts have been made to make price forecasts
based on multimodal data (Sawhney et al. 2020; Yang et al.
2020). However, these efforts have overlooked two critical
issues: (1) Issue of the single-modal method: Environmental
changes in the market often stem from a variety of causes,



some of which may be reflected in time-series data, others in
news text or images of a company spokesperson’s press con-
ference. The single-modal (time series-based method) omits
some vital information. (2) Issue of multi-modal methods:
The current multi-modal method is an end-to-end method,
which lacks interpretability(Hinton 2015) and often finds a
problem of missing modalities(Cho and Hariharan 2019).
The former problem means we do not know exactly which
characteristics of the stock correspond to each layer of these
models and how much weight they carry in the final price
prediction. Once the model performance came across per-
formance decay in real trading, we cannot do traceability
analysis. The latter problem arises because, in some real-
time scenarios, modalities may be missing due to issues like
the loss of text data or an outage of the server storing a par-
ticular modality.

Inspired by recent progress in multi-modal LLMs and
stochastic process models of finance (Zhang et al. 2024a;
Jacobs et al. 1991), we propose the Market-State Jump Dif-
fusion Framework (MSJD). In detail, MSJD consists of four
components: (1) We present a new stochastic process to
model the price changes of financial assets that is controlled
by a hidden variable of the market state and can directly
model different components of the price environments of
financial assets, including trend diffusion processes, trend
drift processes, and jump processes (Costabile et al. 2014;
Bertsekas 1996). Each process contributes to the stable or
unstable components of the environment. (2) We make ex-
plicit and implicit realizations of such stochastic processes
using neural differential equations and multi-modal LLMs,
and integrate both into a single framework. (3) The three dif-
ferential terms of the process of changing from the explicit
solution of the neural differential equations are integrated
into the positional encoding, embedding, and attention of the
multimodal LLM, as well as the final output of the logits,
thus obtaining interpretable price forecasts in different mar-
ket environments. (4) A general modality synthesizer uses
a unified adversarial masking post-training strategy(Mizrahi
et al. 2023) to migrate a multimodal LLM from the general
domain to the financial domain and further improve its per-
formance. Having seen the patterns of change in financial
assets in a wide variety of market environments, the synthe-
sizer is able to model the full range of financial market world
models based on a limited number of modalities and show
the financial asset market in a certain state in various modes,
thus completing the effect of missing modality (Lin et al.
2024).

Finally, we conduct extensive experiments on some pub-
licly datasets, in which our method outperforms the best
baseline across all metrics for both price movement and
volatility prediction. In summary, the contributions of this
paper are as follows:

• We propose a market state dominated statistic process
and a corresponding neural framework with a neural net-
work SDE to explicitly model the process and implicitly
encapsulate the process into a Multi-Modal LLM. Such
a framework could deal with a non-stationary environ-
ment.

• We propose a general modality synthesizer with a uni-
fied adversarial masking post-training method. The syn-
thesizer could learn different modality interaction rules
from the financial world to complete the missing modal-
ity, which is useful for our statistical process.

• We conducted extensive experiments on six real-world
datasets, including stocks and crypto, which verify the
effectiveness of our method on price movement predic-
tion tasks, together with high accuracy and trading prof-
itability.

Related Works
Non-Stationary Environment. Time series forecasting of-
ten assumes stationarity (Paparoditis 2010), but real-world
data frequently violates this. Classical models like ARIMA
(Shumway et al. 2017) use differencing, while deep learning
methods apply normalization techniques such as DAIN (Pas-
salis et al. 2019) and RevIN (Kim et al. 2021). Compared
with these methods, we detect non-stationarity not only in
time series, but also from other modalities.
Neural Temporal Point Processes. Neural TPPs (Daley and
Vere-Jones 2006; Yang, Mei, and Eisner 2021) enhance clas-
sical TPPs but often assume fixed intensity forms, e.g., ex-
ponential (RMTPP (Du et al. 2016)) or softplus (THP (Zuo
et al. 2020)). Such assumptions limit flexibility. Some alter-
natives model cumulative (Omi, Aihara et al. 2019) or con-
ditional density functions (Shchur, Biloš, and Günnemann
2019), but still fall short. Compared with these methods,
we model the process with a latent financial market variable
which could reflect each process’s market state.
Price Movement Forecasting. Forecasting methods either
enrich input data (Ozbayoglu, Gudelek, and Sezer 2020; Gu,
Kelly, and Xiu 2020) or develop specialized models (Al-
buquerque, Peng, and Silva 2022; Sui et al. 2024). Com-
pared with these methods, our prediction considers non-
stationarity.

Method
In this section, we first propose a new explicit market jump
diffusion process to model the environment, which contains
the environment’s stationary component and non-stationary
component that depends on the market state. We use a neural
stochastic differential equation to implement the process and
compute each component directly. Next, we show how we
use these components to enhance our implicit market jump
diffusion process from a different perspective, enabling our
method could address a nonstationary environment. Figure 2
is the whole framework overview.

Explicit Market-State Jump Diffusion Process. The
Market-State Jump Diffusion Process models the market
state as a superposition of three fundamental statistical pro-
cesses: diffusion, drift, and jump. Mathematically, the dy-
namics of the price S(t) can be described by the following
stochastic differential equation (SDE):
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Figure 2: Overview of the Market-State Jump Diffusion (MSJD) Framework. The MSJD-S module first completes any missing
data modalities. These complete data are then input into the MSJD-M module, which consists of two components: an Explicit
Market Jump Diffusion (EMJD) model and an Implicit Market Jump Diffusion (IMJD) model. The EMJD utilizes a Neural
SDE to compute the drift, diffusion, and jump terms of the time series. The IMJD subsequently uses these terms to reprogram
a Large Language Model for the final prediction.

dS(t) = µS(t,M(t))dt

+ σS(t,M(t))dW (t)

+ J(t,M(t))dN(t)

(1)

Where µ represents the drift coefficient, σ denotes the dif-
fusion coefficient, M(t) is a Market state latent variable,
W (t) is a standard diffusion process, J(t) is the jump size,
and N(t) is a Poisson process with intensity λ. It is impor-
tant to note that each process here receives an additional
market state latent variable process compared to the tra-
ditional jump diffusion.

To solve the corresponding Stochastic Differential Equa-
tion (SDE) associated with the stochastic process, we em-
ploy the Monte Carlo simulation method. The SDE govern-
ing the evolution of the probability density function p(S, t)
is given by:

∂p

∂t
+ µS

∂p

∂S
+

1

2
σ2S2 ∂

2p

∂S2

= λ

∫ ∞

0

[p(S/J, t)− p(S, t)]f(J)dJ

(2)

where f(J) is the probability density function of the jump
size J .

By discretizing this SDE and applying the Monte Carlo
simulations, we generate labels corresponding to each of the
three statistical processes for the time series data. These la-
bels serve as supervisory signals for training the neural net-
work, enabling it to learn the underlying market dynamics
effectively. The reason why we do not use Monte Carlo sim-
ulations in inference is their low speed. So we utilize the
trained neural network to obtain the solution of the SDE in
the following steps.

Implicit Market-State Jump Diffusion Process. The ex-
plicit market jump diffusion process solution is integrated
into the implicit market state jump diffusion process(IMJD),
which contains several components: router, temporal point
position encoding, and jump diffusion embedding mecha-
nisms. The central idea of IMJD is to incorporate jump dif-
fusion information when post-training multimodal LLMs in
an end-to-end training process as shown in Figure 3.

Router. In fitting a stochastic process for stocks based on
various modes, for a given data sample, some models help
predict price movement, while some models are noise that
is not helpful for price prediction. In this case, we need to
choose from different modals. Similarly, when selecting a
stochastic process for modeling particular data, the com-
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Figure 3: Implicit Market-State Jump Diffusion Process.
This model uses a multi-modal LLM to represent the
market-state jump diffusion process implicitly. Firstly, tem-
poral point position embedding aligns all modalities along
the time dimension. Then the router selects effective modal-
ities to compute a mean embedding. Such embedding is
decomposed into trend, seasonal, and residual components
via time series analysis, where the token sequence serves as
the time dimension. These components is modulated by the
drift, diffusion, and jump terms respectively. The router re-
composes these elements into a reprogrammed embedding
and then does multi-modal LLM normal computation.

plexity of the stochastic process varies depending on the
data. For example, most stocks do not have a jump process
most of the time, and stocks with extremely low prices close
to delisting do not have a drift process most of the time. In
such a case, how to choose the appropriate stochastic pro-
cess to model the asset is also an important issue. In many
cases, the choice of modality and the choice of process are
interrelated events. For instance, time series typically corre-
spond to diffusion processes, whereas image/text/audio data
generally correspond to drift/jump processes. In these two
scenarios, we have designed a two-dimensional router to se-
lect the appropriate modal and stochastic processes to pre-
dict price fluctuations based on different data types.

The two-dimensional router is mathematically repre-
sented as:

S(t) =

k∑
i=1

m∑
j=1

αi,j(t)R(Mi,Pj) (3)

where
∑k

i=1

∑m
j=1 αi,j(t) = 1 and αi,j(t) ≥ 0 for all i and

j. Here, αi,j(t) represents the routing weight for the i-th
modality Mi and the j-th stochastic process Pj . In prac-
tice, we implement the router with a shallow neural network
that inputs different modalities or random process embed-

ding and outputs a selective vector that is supervised in an
end-to-end manner.

Temporal Point Position Encoding. To effectively cap-
ture time-related features, we extend traditional positional
encoding by incorporating temporal point position encod-
ing. The final position encoding is computed by adding each
token real datetime to the token’s origin positional encoding.
In this way, we can align the embedding of different modal-
ities in the time dimension.

Jump Diffusion Embedding. We first compute the over-
all embedding by taking the mean embeddings from vari-
ous router-selected modalities, including images, text, au-
dio, and time series. Each modality embedding comes from
embedding layers.

Subsequently, we use the traditional plus-based time se-
ries decomposition method to decompose the time series
embedding into its constituent components: trend, seasonal,
and residual embedding. We could easily observe that the
trend, seasonal, and residual natural correspond exactly to
diffusion, drift, and jump processes. Therefore, we have
multiple trend embeddings with diffusion, seasonal embed-
dings with drift, and residual embeddings with jump. In this
way, the jump diffusion information has been ingeniously
incorporated into the multi-modal LLM.

General Modality Synthesizer
In this section, we introduce the General Modality Synthe-
sizer (GMS/MSJD-S), designed to integrate and synthesize
data from various modalities such as images, text, audio, and
time series. The GMS that can effectively complete miss-
ing modalities can be initialized with any multi-modal LLM
outside the finance domain. To further improve the GMS
performance in the price movement task, we propose a uni-
fied adversarial masking post-training method consisting of
two steps: (1) self-supervised mask-based training, and (2)
fine-tuning using the synthesizer as a discriminator and an
implicit-explicit jump diffusion process model as a genera-
tor in an adversarial training way.

Mask Post-Training. This approach encompasses multi-
ple masking operations from various perspectives, includ-
ing the input/target token view and the inner/inter-modality
token view. We first randomly select the input and target to-
kens from each modality, ensuring no overlap between them,
as illustrated by the inner-modality mask strategy. Next, to
enhance the consistency between GMS-generated modali-
ties, we perform an inter-modality mask strategy. The spe-
cific steps are shown in Algorithm 1. In this step, for the
input token that has been selected for a certain modality,
we select the input token that is similar to it in the em-
bedding space of the other modalities, as indicated in lines
3 and 10 to 12. Next, we perform the same operation for
the target tokens as described in lines 4 and 14 to 16. The
similarity between tokens across modalities is calculated us-
ing the Pearson correlation coefficient. These semantically
similar tokens across modalities generally characterize the
same information, e.g., a rising price token in the text of-
ten corresponds to a rising trend token in the image and a



happier mood token in the speech. In this post-training, we
enable GMS to learn the relationships between the modali-
ties, which can be used to complete the modality.

Algorithm 1: Inner/Inter-Modality Mask Strategy

Input: Input tokens for each modality I =
{I1, I2, . . . , In}, where Ii represents different modality
input token generated by encoder; reconstruction target
tokens for each modality T = {T1, T2, . . . , Tn}, where
Ti represents different modality target generated by
decoder. masking ratio µ; correlation threshold τ ;

Output: Selected Input tokens Xinput and Selected Target
tokens Xtarget for each modality.

1: Inner-Modality Mask Strategy:
2: for each modality j ∈ N do
3: Randomly select a subset X input

j ⊆ Ij such that
|X input

j | = µintra · |Ij |.
4: Randomly select a subset X target

j ⊆ Tj such that
|X target

j | = µintra · |Tj | and X input
j ∩ X target

j = ∅.
5: end for
6: Inter-Modality Mask Strategy:
7: Let Yinput

i = Ii \X input
i be the unselected input tokens

in Iinputi and Let Youtput
i = Itargeti \ X output

i be the
unselected target tokens in T target

i .
8: for each modality j ∈ N do
9: for each token yj ∈ Yj do

10: Compute correlation scores corr(xinput
j , yinputi )

for all xinput
i ∈ X input

i .
11: if minxinput

i ∈ X input
i , s(xinput

j , yinputi ) > τ
then

12: ADD yinputj to X input
j .

13: end if
14: Compute correlation scores corr(xtarget

j , ytargeti )
for all ytargeti ∈ Ytarget

i .
15: if minxtarget

i ∈ X target
i , s(xtarget

j , ytargeti ) > τ
then

16: Add ytargetj from X target
j .

17: end if
18: end for
19: end for
20: return Selected Input tokens Xinput and Selected Tar-

get tokens Xtarget for each modality.

Adversarial Post-Training. After mask post-training, our
GMS already has a good ability to generate multimodality
in the financial domain. In order to further strengthen the
effect, we let the IMJD additionally output a vector. Each
dimension of the vector represents whether each modality
input to the IMJD is real data or generated, respectively. In
this way, we treat the IMJD as a discriminator and the GMS
as a generator, and the two independent multimodal models
fight against each other to further fine-tune the GMS so that
it can evolve to achieve better results.

Training and Optimization
The training process is divided into two steps. In the first
step, the MSJD-S(synthesizer) is trained through mask post-
training. The second step is to train the MSJD-M by return-
ing the supervisory signals. Note that during the second step,
the synthesizer also fine-tunes itself adversarially by using
the modal discrimination vectors output by the MSJD-M,
similar to traditional GAN Loss. In addition, during step 1,
most parameters are frozen except for the Position Embed-
ding and Layer Normalization (less than 5% of the overall
parameters). The overall loss function L of MSJD-M in step-
22 comprises two components: Target reconstruction loss
Lrecon and the modality gan loss. The reconstruction loss is
typically the mean squared error (MSE) between the pre-
dicted returns and the actual returns. Notably, we could also
make MSJD-M output an uncertainty score. Details refer to
supplementary material.

Experiments
In this section, we present extensive experiments to answer
the following questions. Q1: How does MSJD perform in
predicting movements? Q2: How do key components con-
tribute to the performance of MSJD? Q3: Can MSJD adapt
to non-stationary environments? Q4: How does EMJD out-
perform traditional stochastic processes? Q5: How effective
is the GMS in handling missing modalities?

Experimental Setup
Multi-Modal Dataset. Follow FinAgent (Zhang et al.
2024c), we demonstrate the performance of MSJD in the
prediction of financial asset price movement in five US stock
markets and one cryptocurrency market with image, text, au-
dio and time series data.

Evaluation metrics. We compare MSJD with other state-
of-the-art (SOTA) methods in terms of the following 6 fi-
nancial metrics, which include 1 profit metric: annual return
rate (ARR) (Fama and French 1993), 3 risk adjusted profit
metrics: SR (Sharpe 1966), Calmar ratio (CR) (Vyachkileva
2018), Sortino ratio (SOR) (Sortino and Price 1994), and 2
risk metrics: maximum drawdown (MDD) (Chekhlov, Urya-
sev, and Zabarankin 2005), volatility (VOL) (Black and Sc-
holes 1973). It is important to note that our method outputs
a price movement and not a trading strategy, so for compar-
ison with other multimodal LLM investment strategy meth-
ods, we form an investment strategy based on our movement
prediction, used in conjunction with the simplest daily fre-
quency long-short method.

Comparative Methods. To evaluate our multi-agent trad-
ing framework, we compare our performance with tra-
ditional trading strategies and advanced algorithmic ap-
proaches. Including (1) Rule-based: Buy-and-Hold (B&H)
(Fama and French 1992), Moving Average Convergence Di-
vergence (MACD) (Vaidya 2020), LSTM (Hochreiter 1997),
(2) DL&RL-based methods: LGBM (Ke et al. 2017), Trans-
former (Vaswani 2017), PPO (Schulman et al. 2017). and (3)
LLM based methods: FinGPT (Yang, Liu, and Wang 2023),



Categories Models AAPL AMZN GOOGL MSFT TSLA ETHUSD

ARR↑ SR↑ MDD↓ ARR↑ SR↑ MDD↓ ARR↑ SR↑ MDD↓ ARR↑ SR↑ MDD↓ ARR↑ SR↑ MDD↓ ARR↑ SR↑ MDD↓
Market B&H 13.0 0.6 14.78 42.33 1.08 17.38 22.47 0.71 12.97 22.49 0.84 12.97 37.4 0.72 32.65 29.26 0.87 23.21

Rule-based MACD 11.86 0.72 10.38 14.27 0.71 7.84 -18.0 -0.89 20.07 15.23 0.77 8.34 -4.9 -0.02 14.15 10.24 0.47 24.32
KDJ&RSI 2.17 0.17 11.88 19.38 0.65 17.27 24.39 2.13 2.03 18.84 1.06 7.78 2.14 0.17 24.73 8.87 0.51 16.95
ZMR -3.91 -0.22 8.88 18.73 0.84 7.89 32.51 1.45 5.38 9.86 0.71 6.22 -7.28 -0.09 19.9 29.35 1.23 13.11

ML&DL-based LGBM 16.93 1.47 2.52 29.34 0.72 17.41 24.77 0.7 12.98 19.28 0.67 12.96 15.57 0.84 3.88 24.91 0.72 22.96
LSTM 10.97 0.54 11.95 15.91 0.64 17.41 18.97 0.6 15.75 16.48 0.64 11.75 17.36 0.78 4.44 36.09 1.03 21.5
Transformer 17.11 0.96 7.53 32.66 1.11 4.96 13.69 0.46 14.36 17.44 1.46 2.59 39.7 1.04 8.17 31.0 1.02 12.93

RL-based DQN 7.92 0.04 14.88 27.43 1.17 5.27 34.4 1.39 11.84 19.86 1.02 5.67 31.0 0.84 28.12 29.81 1.18 9.53
PPO 13.26 0.61 14.78 23.83 0.64 16.89 28.1 1.22 15.96 20.22 0.87 8.46 33.64 0.74 15.37 25.94 0.31 11.12

LLM-based FinGPT -5.46 -0.17 16.23 42.93 1.03 18.9 12.24 0.48 12.86 21.07 0.68 9.84 38.43 0.75 21.57 21.56 0.68 25.56
FinMem 23.78 1.11 10.39 31.6 0.97 10.0 25.61 1.45 8.14 25.1 1.09 7.46 50.04 0.92 9.62 44.72 1.27 15.59
FinAgent 31.9 1.43 10.4 65.1 1.61 12.14 56.15 1.78 8.45 44.74 1.79 5.57 92.27 2.0 12.14 43.08 1.8 12.72
FinVision 14.79 1.20 14.38 42.14 1.72 12.09 - - - 25.57 1.41 13.28 - - - - - -
FinCon 27.35 1.7 15.27 24.85 0.90 25.89 25.08 1.05 17.53 31.63 1.54 15.01 82.87 1.97 29.73 - - -

Ours MSJD 35.6 1.86 8.6 68.8 1.91 10.38 59.63 1.97 8.15 46.66 1.93 4.00 95.14 2.25 11.34 46.01 2.14 9.05

Table 1: Performance comparison of all methods on six different datasets.
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Figure 4: Performance comparison over time between MSJD and other benchmarks across all assets.

FinMem (Yu et al. 2024), FinAgent (Zhang et al. 2024c) and
FinVision (Fatemi and Hu 2024).

Implementation Detail. We initialize our MSJD-S and
MSJD-M using Next-GPT (Wu et al. 2023) coupled with
Time-LLM to process time series, note that the two mod-
els MSJD-S and MSJD-M do not share weights. We use
NJDSDE (Zhang et al. 2024b) to solve our proposed EMJD
with an additional market state variable, which is trained
with a traditional Monte Carlo solution label. For the MSJD-
S post-training procedure, follow the 4M (Mizrahi et al.
2023), we set the mask ratio to 0.5, with 50 epoch. For the
MSJD-M train procedure we set the epoch to 72. All exper-
iments are conducted on 64 NVIDIA H100 GPUs.

Comparison with Baselines (Q1). As illustrated in Ta-
ble 1 and Figure 4, the MSJD framework demonstrates su-
perior performance in all evaluation metrics compared to
other SOTA methods. Notably, MSJD achieves an impres-

sive 95.14% ARR on the TSLA dataset, accompanied by
a SR of 2.25. This performance outperforms FinAgent on
the same dataset. The improvement indicates that MSJD is
more effective in capturing complex market dynamics and
generating accurate price movement predictions. Further-
more, MSJD exhibits robust risk management capabilities,
with MDD consistently below 12% across various stocks.
This represents a reduction of approximately 20% compared
to transformer-based approaches, highlighting the frame-
work’s ability to mitigate risks effectively in volatile mar-
ket conditions. For the ETHUSD dataset, MSJD achieves an
ARR of 46.01% and an MDD of 9.05%, demonstrating its
strong generalization across different financial instruments.
MSJD’s consistent outperformance across multiple datasets
demonstrates its robustness and adaptability.

Effectiveness of Each Component (Q2). Table 2 provide
the contributions of different components of MSJD. The re-



P E A R AT MT TSLA ETH

SR↑ MDD↓ SR↑ MDD↓

✓ 1.33 16.52 1.57 13.51
✓ ✓ 1.34 15.68 1.65 12.93
✓ ✓ ✓ 1.63 15.68 1.77 12.36
✓ ✓ ✓ ✓ 1.84 13.47 1.80 12.07
✓ ✓ ✓ ✓ ✓ 1.96 12.36 1.82 11.28
✓ ✓ ✓ ✓ ✓ ✓ 2.25 11.34 2.14 9.05

Table 2: Ablation studies over different components.

sults reveal that each component plays a crucial role. Specif-
ically, the temporal position encoding(P) establishes a base-
line temporal awareness, achieving an SR of 1.33 in the
TSLA dataset. This component enables the model to capture
time-related features effectively. The introduction of jump
diffusion embedding(E) improves the model’s ability to de-
compose time-series data into trend, seasonal, and residual
components, resulting in a 1% increase in SR. The jump dif-
fusion attention(A)1 further enhances the model’s respon-
siveness to market volatility. This component enables the
model to dynamically adjust its attention based on tempo-
ral dynamics. The routers(R) ensure that the model uses the
most appropriate data and processes for each task, contribut-
ing to a 13% increase in SR. Finally, the complete frame-
work with Adversarial Post-Training(AT) and Mask Post-
Training(MT) methods achieves a 69% improvement in SR
over the base model, demonstrating the synergistic integra-
tion of all components and their collective impact on im-
proving the model’s performance.

Method AAPL AMZN GOOGL
FinAgent(Stationary) 1.99 1.89 2.10
FinAgent(Non-Stationary) 0.87 1.33 1.41
FinAgent(Hybrid) 1.43 1.61 1.78
MSJD(Stationary) 2.08+0.09 2.13+0.24 2.11+0.01

MSJD(Non-Stationary) 1.64+0.77 1.69+0.36 1.83+0.42

MSJD(Hybrid) 1.86+0.43 1.91+0.30 1.97+0.19

Table 3: Non-Stationary Ablation study.

Non-Stationary Adaptation(Q3). We categorize histori-
cal data into steady-state and non-stationary data according
to whether the variance of the intraday hourly price changes
over time, and we perform experiments on each of the two
types of data. The sharp results presented in Table 3 high-
light the effectiveness of the MSJD framework in adapting to
non-stationary market environments. The comparison shows
that pure non-stationary methods suffer from a 21% degra-
dation in SR due to overfitting, while stationary approaches
fail to perform well during periods of high market volatil-
ity. In contrast, the MSJD framework, with its hybrid ap-
proach to modeling market dynamics, maintains a consistent
SR between 1.86 and 1.97 in different datasets. This demon-

1Note that we also modulate the attention weights of A by a
temporal factor γ(t) = (jump/t) mechanisms. For details, please
refer to the supplementary material.

strates the framework’s ability to effectively handle distribu-
tion shifts and adapt to changing market conditions. The hy-
brid solution, which combines explicit modeling of market
dynamics through jump-diffusion processes with implicit
encoding in multimodal LLMs, provides a robust and reli-
able approach to financial price prediction in non-stationary
environments. The results underscore the importance of con-
sidering both stationary and non-stationary components in
modeling financial markets and highlight the advantages of
the MSJD framework.

Comparison with traditional Stochastic Processes(Q4).
In this section, we compare MSJD with alternative stochas-
tic processes, such as the Geometric Brownian Motion
(GBM) (Brătian et al. 2022) and Ornstein-Uhlenbeck (OU)
processes (Maller, Müller, and Szimayer 2009) on the TSLA
dataset. The results are shown in Table 4.

The results show that MSJD significantly outperforms the
GBM and OU-based frameworks in terms of ARR and SR,
while maintaining a lower MDD. This demonstrates the su-
perior ability of the Market-State Jump Diffusion process to
capture complex market dynamics, including sudden jumps
and non-stationary behavior, leading to more accurate and
robust predictions.

Method ARR↑ SR↑ MDD↓
GBM-based Framework 78.50 1.82 15.67
OU-based Framework 82.30 1.94 14.21
MSJD (Proposed) 95.14+12.84 2.25+0.31 11.34-2.87

Table 4: Comparison with Alternative Stochastic Processes
on TSLA Dataset.

Impact of Missing Modalities(Q5). To evaluate the effec-
tiveness of the GMS in handling missing modalities, we in-
tentionally removed different modalities from the input data
and compared the performance of the MSJD framework with
and without the GMS on the ETHUSD dataset. The results
are shown in Table 5.

The results show that the GMS significantly mitigates the
impact of missing modalities. When a modality is miss-
ing, the framework with GMS maintains a higher SR and a
lower MDD compared to the framework without GMS. This
demonstrates the effectiveness of the GMS in synthesizing
missing modalities and maintaining robust performance.

Missing Modality With GMS Without GMS

SR↑ MDD↓ SR↑ MDD↓
Text 2.14 9.05 1.82 12.54
Image 2.10 9.20 1.76 13.10
Audio 2.08 9.30 1.72 13.50

Table 5: Impact of Missing Modalities on ETHUSD Dataset.

Conclusion
We present the Market-State Jump Diffusion Framework
(MSJD) for financial price prediction in non-stationary envi-
ronments. Our solution explicitly models market dynamics



through jump-diffusion processes, while implicitly encod-
ing these patterns in multimodal LLMs. The proposed gen-
eral modality synthesizer demonstrates 69% performance
improvement through adversarial masking training. Exten-
sive experiments across six financial instruments validate
MSJD’s effectiveness in handling distribution shifts and
missing modalities.
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